Header

UZH-Logo

Maintenance Infos

Long-term cropping systems and tillage management effects on soil organic carbon stocks and steady state level of C sequestration rates in a semiarid environment


Barbera, V; Poma, I; Gristina, L; Novara, A; Egli, M (2010). Long-term cropping systems and tillage management effects on soil organic carbon stocks and steady state level of C sequestration rates in a semiarid environment. Land degradation & development, 23(1):82-91.

Abstract

A calcareous and clayey xeric Chromic Haploxerept of a long-term experimental site in Sicily (Italy) was sampled (0–15 cm depth) under different land use management and cropping systems (CSs) to study their effect on soil aggregate stability and organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual-layer [DL] and conventional tillage [CT]) and two CSs (durum wheat monocropping [W] and durum wheat/faba bean rotation [WB]). The annually sequestered SOC with W was 2·75-times higher than with WB. SOC concentrations were also higher. Both NT and CT management systems were the most effective in SOC sequestration whereas with DL system no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7·4 Mg C ha−1 y−1. Independent of the CSs, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting with minerals. Macroaggregates (>250 µm) and large microaggregates (75–250 µm) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macroaggregates while NT and CT gave rise to higher SOC contents. In Mediterranean areas with Vertisols, agricultural strategies aimed at increasing the SOC contents should probably consider enhancing the proportion of coarser soil fractions so that, in the short-term, organic C can be accumulated.

Abstract

A calcareous and clayey xeric Chromic Haploxerept of a long-term experimental site in Sicily (Italy) was sampled (0–15 cm depth) under different land use management and cropping systems (CSs) to study their effect on soil aggregate stability and organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual-layer [DL] and conventional tillage [CT]) and two CSs (durum wheat monocropping [W] and durum wheat/faba bean rotation [WB]). The annually sequestered SOC with W was 2·75-times higher than with WB. SOC concentrations were also higher. Both NT and CT management systems were the most effective in SOC sequestration whereas with DL system no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7·4 Mg C ha−1 y−1. Independent of the CSs, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting with minerals. Macroaggregates (>250 µm) and large microaggregates (75–250 µm) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macroaggregates while NT and CT gave rise to higher SOC contents. In Mediterranean areas with Vertisols, agricultural strategies aimed at increasing the SOC contents should probably consider enhancing the proportion of coarser soil fractions so that, in the short-term, organic C can be accumulated.

Statistics

Citations

Dimensions.ai Metrics
43 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

85 downloads since deposited on 27 Jan 2011
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:14 October 2010
Deposited On:27 Jan 2011 12:15
Last Modified:17 Feb 2018 18:11
Publisher:Wiley-Blackwell
ISSN:1085-3278
OA Status:Green
Publisher DOI:https://doi.org/10.1002/ldr.1055
Official URL:http://onlinelibrary.wiley.com/doi/10.1002/ldr.1055/abstract

Download