Header

UZH-Logo

Maintenance Infos

10Be inventories in Alpine soils and their potential for dating land surfaces


Egli, M; Brandova, D; Böhlert, R; Favilli, F; Kubik, P W (2010). 10Be inventories in Alpine soils and their potential for dating land surfaces. Geomorphology, 119(1-2):62 - 73.

Abstract

To exploit natural sedimentary archives and geomorphic landforms it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. This paper explores the applicability of soil dating using the inventory of meteoric 10Be in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or the surface exposure determination using in situ produced 10Be). Consequently, a direct comparison of the ages of the soils using meteoric 10Be and other dating techniques was made possible. The estimation of 10Be deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric 10Be deposition rates as a function of the annual precipitation rate, b) a constant 10Be input for the Central Alps, and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the 10Be inventory in soils and on scenario a) for the 10Be input agreed reasonably well with the age using surface exposure or radiocarbon dating. The ages obtained from soils using scenario b) produced ages that were mostly too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the 10Be inventory and 10Be deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The calculated erosion rates using these scenarios seemed to be plausible with values in the range of 0-57�mm/ky. The dating of soils using 10Be has several potential error sources. Analytical errors as well as errors from other parameters such as bulk soil density and soil skeleton content have to be taken into account. The error range was from 8 up to 21. Furthermore, uncertainties in estimating 10Be deposition rates substantially influence the calculated ages. Relative age estimates and, under optimal conditions, absolute dating can be carried out. Age determination of Alpine soils using 10Be gives another possibility to date surfaces when other methods fail or are not possible at all. It is, however, not straightforward, quite laborious and may consequently have some distinct limitations.

Abstract

To exploit natural sedimentary archives and geomorphic landforms it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. This paper explores the applicability of soil dating using the inventory of meteoric 10Be in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or the surface exposure determination using in situ produced 10Be). Consequently, a direct comparison of the ages of the soils using meteoric 10Be and other dating techniques was made possible. The estimation of 10Be deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric 10Be deposition rates as a function of the annual precipitation rate, b) a constant 10Be input for the Central Alps, and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the 10Be inventory in soils and on scenario a) for the 10Be input agreed reasonably well with the age using surface exposure or radiocarbon dating. The ages obtained from soils using scenario b) produced ages that were mostly too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the 10Be inventory and 10Be deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The calculated erosion rates using these scenarios seemed to be plausible with values in the range of 0-57�mm/ky. The dating of soils using 10Be has several potential error sources. Analytical errors as well as errors from other parameters such as bulk soil density and soil skeleton content have to be taken into account. The error range was from 8 up to 21. Furthermore, uncertainties in estimating 10Be deposition rates substantially influence the calculated ages. Relative age estimates and, under optimal conditions, absolute dating can be carried out. Age determination of Alpine soils using 10Be gives another possibility to date surfaces when other methods fail or are not possible at all. It is, however, not straightforward, quite laborious and may consequently have some distinct limitations.

Statistics

Citations

25 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

100 downloads since deposited on 11 Feb 2011
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Erosion
Language:English
Date:2010
Deposited On:11 Feb 2011 16:55
Last Modified:05 Apr 2016 14:37
Publisher:Elsevier
ISSN:0169-555X
Publisher DOI:https://doi.org/10.1016/j.geomorph.2010.02.019

Download

Download PDF  '10Be inventories in Alpine soils and their potential for dating land surfaces'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB