Header

UZH-Logo

Maintenance Infos

Efficient discovery of fluorescent chemosensors based on a biarylpyridine scaffold


Malashikhin, S A; Baldridge, K K; Finney, N S (2010). Efficient discovery of fluorescent chemosensors based on a biarylpyridine scaffold. Organic Letters, 12(5):940-943.

Abstract

The discovery of several fluorescent chemosensors for Hg(II) and Ag(I) in mixed aqueous solution is reported. The ease with which these fluorionophores were prepared from a common core underscores the utility of conformational restriction as a signaling mechanism. In addition, for the first time, significant changes were observed in biarylpyridine emission wavelength, allowing ratiometric detection of Hg(II) and Ag(I). Finally, on the basis of computational analyses, beneficial structural modifications were predicted for the next generation of chemosensors.

Abstract

The discovery of several fluorescent chemosensors for Hg(II) and Ag(I) in mixed aqueous solution is reported. The ease with which these fluorionophores were prepared from a common core underscores the utility of conformational restriction as a signaling mechanism. In addition, for the first time, significant changes were observed in biarylpyridine emission wavelength, allowing ratiometric detection of Hg(II) and Ag(I). Finally, on the basis of computational analyses, beneficial structural modifications were predicted for the next generation of chemosensors.

Statistics

Citations

15 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2010
Deposited On:18 Feb 2011 20:26
Last Modified:05 Apr 2016 14:40
Publisher:American Chemical Society
ISSN:1523-7052
Publisher DOI:https://doi.org/10.1021/ol902902m
PubMed ID:20131818

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations