Header

UZH-Logo

Maintenance Infos

Climatic cycles recorded in the Middle Eocene hemipelagites from a Dinaric foreland basin of Istria (Croatia)


Luzar-Oberiter, B; Hochuli, P A; Babic, L; Glumac, B; Tibljas, D (2010). Climatic cycles recorded in the Middle Eocene hemipelagites from a Dinaric foreland basin of Istria (Croatia). Geologica Carpathica, 61(3):193-200.

Abstract

Middle Eocene hemipelagic marls from the Pazin-Trieste Basin, a foreland basin of the Croatian Dinarides, display repetitive alternations of two types of marls with different resistance to weathering. This study focuses on the chemical composition, stable isotopes, and palynomorph content of these marls in order to better understand the nature of their cyclic deposition and to identify possible paleoenvironmental drivers responsible for their formation. The less resistant marls (LRM) have consistently lower carbonate content, lower δ18O and δ13C values, and more abundant dinoflagellate cysts than the more resistant marls (MRM). We interpret these differences between the two marl types to be a result of climatic variations, likely related to Milankovitch oscillations. Periods with wetter climate, associated with increased continental runoff, detrital and nutrient influx produced the LRM. Higher nutrient supply sparked higher dinoflagellate productivity during these times, while reduced salinity and stratification of the water column may have hampered the productivity of calcareous nannoplankton and/or planktonic foraminifera. In contrast, the MRM formed during dryer periods which favoured higher carbonate accumulation rates. This study provides new information about the sedimentary record of short-scale climate variations reflected in wet-dry cycles during an overall warm, greenhouse Earth.

Abstract

Middle Eocene hemipelagic marls from the Pazin-Trieste Basin, a foreland basin of the Croatian Dinarides, display repetitive alternations of two types of marls with different resistance to weathering. This study focuses on the chemical composition, stable isotopes, and palynomorph content of these marls in order to better understand the nature of their cyclic deposition and to identify possible paleoenvironmental drivers responsible for their formation. The less resistant marls (LRM) have consistently lower carbonate content, lower δ18O and δ13C values, and more abundant dinoflagellate cysts than the more resistant marls (MRM). We interpret these differences between the two marl types to be a result of climatic variations, likely related to Milankovitch oscillations. Periods with wetter climate, associated with increased continental runoff, detrital and nutrient influx produced the LRM. Higher nutrient supply sparked higher dinoflagellate productivity during these times, while reduced salinity and stratification of the water column may have hampered the productivity of calcareous nannoplankton and/or planktonic foraminifera. In contrast, the MRM formed during dryer periods which favoured higher carbonate accumulation rates. This study provides new information about the sedimentary record of short-scale climate variations reflected in wet-dry cycles during an overall warm, greenhouse Earth.

Statistics

Altmetrics

Downloads

0 downloads since deposited on 31 Jan 2011
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Uncontrolled Keywords:Eocene, Dinarides, Croatia, climate, cycles, hemipelagites
Language:English
Date:2010
Deposited On:31 Jan 2011 15:41
Last Modified:07 Dec 2017 06:40
Publisher:Veda, Publishing House of the Slovak Academy of Sciences
ISSN:1335-0552
Publisher DOI:https://doi.org/10.2478/v10096-010-0010-7

Download