Header

UZH-Logo

Maintenance Infos

KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents - Zurich Open Repository and Archive


Yoshikiyo, K; Kratz, K; Hirota, K; Nishihara, K; Takata, M; Kurumizaka, H; Horimoto, S; Takeda, S; Jiricny, J (2010). KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107(50):21553-21557.

Abstract

Fanconi anemia (FA) is a rare genetic disease characterized by congenital defects, bone marrow failure, chromosomal instability, and cancer susceptibility. One hallmark of cells from FA patients is hypersensitivity to interstrand cross-linking agents, such as the chemotherapeutics cisplatin and mitomycin C (MMC). We have recently characterized a FANCD2/FANCI-associated nuclease, KIAA1018/FAN1, the depletion of which sensitizes human cells to these agents. However, as the down-regulation of FAN1 in human cells was mediated by siRNA and thus only transient, we were unable to study the long-term effects of FAN1 loss on chromosomal stability. We now describe the generation of chicken DT40 B cells, in which the FAN1 locus was disrupted by gene targeting. FAN1-null cells are highly sensitive to cisplatin and MMC, but not to ionizing or UV radiation, methyl methanesulfonate, or camptothecin. The cells do not display elevated sister chromatid exchange frequencies, either sporadic or MMC-induced. Interestingly, MMC treatment causes chromosomal instability that is quantitatively, but not qualitatively, comparable to that seen in FA cells. This finding, coupled with evidence showing that DT40 cells deficient in both FAN1 and FANCC, or FAN1 and FANCJ, exhibited increased sensitivity to cisplatin compared with cells lacking only FAN1, suggests that, despite its association with FANCD2/FANCI, FAN1 in DT40 cells participates in the processing of damage induced by interstrand cross-linking-generating agents also independently of the classical FA pathway.

Abstract

Fanconi anemia (FA) is a rare genetic disease characterized by congenital defects, bone marrow failure, chromosomal instability, and cancer susceptibility. One hallmark of cells from FA patients is hypersensitivity to interstrand cross-linking agents, such as the chemotherapeutics cisplatin and mitomycin C (MMC). We have recently characterized a FANCD2/FANCI-associated nuclease, KIAA1018/FAN1, the depletion of which sensitizes human cells to these agents. However, as the down-regulation of FAN1 in human cells was mediated by siRNA and thus only transient, we were unable to study the long-term effects of FAN1 loss on chromosomal stability. We now describe the generation of chicken DT40 B cells, in which the FAN1 locus was disrupted by gene targeting. FAN1-null cells are highly sensitive to cisplatin and MMC, but not to ionizing or UV radiation, methyl methanesulfonate, or camptothecin. The cells do not display elevated sister chromatid exchange frequencies, either sporadic or MMC-induced. Interestingly, MMC treatment causes chromosomal instability that is quantitatively, but not qualitatively, comparable to that seen in FA cells. This finding, coupled with evidence showing that DT40 cells deficient in both FAN1 and FANCC, or FAN1 and FANCJ, exhibited increased sensitivity to cisplatin compared with cells lacking only FAN1, suggests that, despite its association with FANCD2/FANCI, FAN1 in DT40 cells participates in the processing of damage induced by interstrand cross-linking-generating agents also independently of the classical FA pathway.

Citations

40 citations in Web of Science®
43 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

73 downloads since deposited on 01 Feb 2011
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2010
Deposited On:01 Feb 2011 15:45
Last Modified:05 Apr 2016 14:41
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1011081107
PubMed ID:21115814

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations