Header

UZH-Logo

Maintenance Infos

Semantic web enabled software analysis


Tappolet, J; Kiefer, C; Bernstein, A (2010). Semantic web enabled software analysis. Journal of Web Semantics, 8(2-3):225-240.

Abstract

One of the most important decisions researchers face when analyzing software systems is the choice of a proper data analysis/exchange format. In this paper, we present EvoOnt, a set of software ontologies and data exchange formats based on OWL. EvoOnt models software design, release history information, and bug-tracking meta-data. Since OWL describes the semantics of the data, EvoOnt (1) is easily extendible, (2) can be processed with many existing tools, and (3) allows to derive assertions through its inherent Description Logic reasoning capabilities. The contribution of this paper is that it introduces a novel software evolution ontology that vastly simplifies typical software evolution analysis tasks. In detail, we show the usefulness of EvoOnt by repeating selected software evolution and analysis experiments from the 2004-2007 Mining Software Repositories Workshops (MSR). We demonstrate that if the data used for analysis were available in EvoOnt then the analyses in 75% of the papers at MSR could be reduced to one or at most two simple queries within off-the-shelf SPARQL tools. In addition, we present how the inherent capabilities of the Semantic Web have the potential of enabling new tasks that have not yet been addressed by software evolution researchers, e.g., due to the complexities of the data integration.

Abstract

One of the most important decisions researchers face when analyzing software systems is the choice of a proper data analysis/exchange format. In this paper, we present EvoOnt, a set of software ontologies and data exchange formats based on OWL. EvoOnt models software design, release history information, and bug-tracking meta-data. Since OWL describes the semantics of the data, EvoOnt (1) is easily extendible, (2) can be processed with many existing tools, and (3) allows to derive assertions through its inherent Description Logic reasoning capabilities. The contribution of this paper is that it introduces a novel software evolution ontology that vastly simplifies typical software evolution analysis tasks. In detail, we show the usefulness of EvoOnt by repeating selected software evolution and analysis experiments from the 2004-2007 Mining Software Repositories Workshops (MSR). We demonstrate that if the data used for analysis were available in EvoOnt then the analyses in 75% of the papers at MSR could be reduced to one or at most two simple queries within off-the-shelf SPARQL tools. In addition, we present how the inherent capabilities of the Semantic Web have the potential of enabling new tasks that have not yet been addressed by software evolution researchers, e.g., due to the complexities of the data integration.

Statistics

Citations

8 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Date:2010
Deposited On:15 Feb 2011 15:00
Last Modified:05 Apr 2016 14:44
Publisher:Elsevier
ISSN:1570-8268
Publisher DOI:https://doi.org/10.1016/j.websem.2010.04.009
Other Identification Number:1411

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations