Header

UZH-Logo

Maintenance Infos

Controlling the effective mass of quantum well states in Pb/Si(111) by interface engineering


Slomski, B; Meier, F; Osterwalder, J; Dil, J (2011). Controlling the effective mass of quantum well states in Pb/Si(111) by interface engineering. Physical Review. B, Condensed Matter and Materials Physics, 83(3):035409 .

Abstract

The in-plane effective mass of quantum well states in thin Pb films on a Bi reconstructed Si(111) surface is studied by angle-resolved photoemission spectroscopy. It is found that this effective mass is a factor of 3 lower than the unusually high values reported for Pb films grown on a Pb reconstructed Si(111) surface. Through a quantitative low-energy electron diffraction analysis the change in effective mass as a function of coverage and for the different interfaces is linked to a change of about 2% in the in-plane lattice constant. To corroborate this correlation, density functional theory calculations are performed on freestanding Pb slabs with different in-plane lattice constants. These calculations show an anomalous dependence of the effective mass on the lattice constant including a change of sign for values close to the lattice constant of Si(111). This unexpected relation is due to a combination of reduced orbital overlap of the 6pz states and altered hybridization between the 6pz and the 6pxy derived quantum well states. Furthermore, it is shown by core-level spectroscopy that the Pb films are structurally and temporally stable at temperatures below 100 K.

© 2011 American Physical Society

Abstract

The in-plane effective mass of quantum well states in thin Pb films on a Bi reconstructed Si(111) surface is studied by angle-resolved photoemission spectroscopy. It is found that this effective mass is a factor of 3 lower than the unusually high values reported for Pb films grown on a Pb reconstructed Si(111) surface. Through a quantitative low-energy electron diffraction analysis the change in effective mass as a function of coverage and for the different interfaces is linked to a change of about 2% in the in-plane lattice constant. To corroborate this correlation, density functional theory calculations are performed on freestanding Pb slabs with different in-plane lattice constants. These calculations show an anomalous dependence of the effective mass on the lattice constant including a change of sign for values close to the lattice constant of Si(111). This unexpected relation is due to a combination of reduced orbital overlap of the 6pz states and altered hybridization between the 6pz and the 6pxy derived quantum well states. Furthermore, it is shown by core-level spectroscopy that the Pb films are structurally and temporally stable at temperatures below 100 K.

© 2011 American Physical Society

Statistics

Citations

10 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

58 downloads since deposited on 18 Feb 2011
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2011
Deposited On:18 Feb 2011 11:59
Last Modified:05 Apr 2016 14:45
Publisher:American Physical Society
ISSN:1098-0121
Publisher DOI:https://doi.org/10.1103/PhysRevB.83.035409
Related URLs:http://arxiv.org/abs/1010.5371

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 3MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations