Header

UZH-Logo

Maintenance Infos

Calcium-regulated intramembrane proteolysis of the RAGE receptor


Galichet, A; Weibel, M; Heizmann, C W (2008). Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochemical and Biophysical Research Communications (BBRC), 370(1):1-5.

Abstract

The receptor for advanced glycation endproducts (RAGE) interacts with several ligands and is involved in various human diseases. RAGE_v1 or sRAGE, a RAGE splice variant, is secreted and contributes to the removal of RAGE ligands. Because RAGE blockade by specific antibodies directed against RAGE extracellular domains and the use of sRAGE have been proven to be beneficial in the context of pathological settings, both RAGE and sRAGE are considered as therapeutic target. Here, we show that sRAGE is also produced through regulated intramembrane proteolysis of the RAGE receptor, which is catalyzed by ADAM10 and the gamma-secretase and that calcium is an essential regulator of RAGE processing. Furthermore, RAGE intracellular domain localizes both in the cytoplasm and the nucleus and induces apoptosis when expressed in cells. These findings reveal new aspects of RAGE regulation and signaling and also provide a new interaction between RAGE and human pathologies.

Abstract

The receptor for advanced glycation endproducts (RAGE) interacts with several ligands and is involved in various human diseases. RAGE_v1 or sRAGE, a RAGE splice variant, is secreted and contributes to the removal of RAGE ligands. Because RAGE blockade by specific antibodies directed against RAGE extracellular domains and the use of sRAGE have been proven to be beneficial in the context of pathological settings, both RAGE and sRAGE are considered as therapeutic target. Here, we show that sRAGE is also produced through regulated intramembrane proteolysis of the RAGE receptor, which is catalyzed by ADAM10 and the gamma-secretase and that calcium is an essential regulator of RAGE processing. Furthermore, RAGE intracellular domain localizes both in the cytoplasm and the nucleus and induces apoptosis when expressed in cells. These findings reveal new aspects of RAGE regulation and signaling and also provide a new interaction between RAGE and human pathologies.

Statistics

Citations

63 citations in Web of Science®
70 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 27 Oct 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:27 Oct 2008 14:01
Last Modified:21 Nov 2017 13:34
Publisher:Elsevier
ISSN:0006-291X
Publisher DOI:https://doi.org/10.1016/j.bbrc.2008.02.163
PubMed ID:18355449

Download