Header

UZH-Logo

Maintenance Infos

Potential of shock waves to remove calculus and biofilm


Müller, P; Guggenheim, B; Attin, T; Marlinghaus, E; Schmidlin, P R (2011). Potential of shock waves to remove calculus and biofilm. Clinical Oral Investigations, 15(6):959-965.

Abstract

Effective calculus and biofilm removal is essential to treat periodontitis. Sonic and ultrasonic technologies are used in several scaler applications. This was the first feasibility study to assess the potential of a shock wave device to remove calculus and biofilms and to kill bacteria. Ten extracted teeth with visible subgingival calculus were treated with either shock waves for 1 min at an energy output of 0.4 mJ/mm(2) at 3 Hz or a magnetostrictive ultrasonic scaler at medium power setting for 1 min, which served as a control. Calculus was determined before and after treatment planimetrically using a custom-made software using a grey scale threshold. In a second experiment, multispecies biofilms were formed on saliva-preconditioned bovine enamel discs during 64.5 h. They were subsequently treated with shock waves or the ultrasonic scaler (N = 6/group) using identical settings. Biofilm detachment and bactericidal effects were then assessed. Limited efficiency of the shock wave therapy in terms of calculus removal was observed: only 5% of the calculus was removed as compared to 100% when ultrasound was used (P </= 0.0001). However, shock waves were able to significantly reduce adherent bacteria by three orders of magnitude (P </= 0.0001). The extent of biofilm removal by the ultrasonic device was statistically similar. Only limited bactericidal effects were observed using both methods. Within the limitations of this preliminary study, the shock wave device was not able to reliably remove calculus but had the potential to remove biofilms by three log steps. To increase the efficacy, technical improvements are still required. This novel noninvasive intervention, however, merits further investigation.

Abstract

Effective calculus and biofilm removal is essential to treat periodontitis. Sonic and ultrasonic technologies are used in several scaler applications. This was the first feasibility study to assess the potential of a shock wave device to remove calculus and biofilms and to kill bacteria. Ten extracted teeth with visible subgingival calculus were treated with either shock waves for 1 min at an energy output of 0.4 mJ/mm(2) at 3 Hz or a magnetostrictive ultrasonic scaler at medium power setting for 1 min, which served as a control. Calculus was determined before and after treatment planimetrically using a custom-made software using a grey scale threshold. In a second experiment, multispecies biofilms were formed on saliva-preconditioned bovine enamel discs during 64.5 h. They were subsequently treated with shock waves or the ultrasonic scaler (N = 6/group) using identical settings. Biofilm detachment and bactericidal effects were then assessed. Limited efficiency of the shock wave therapy in terms of calculus removal was observed: only 5% of the calculus was removed as compared to 100% when ultrasound was used (P </= 0.0001). However, shock waves were able to significantly reduce adherent bacteria by three orders of magnitude (P </= 0.0001). The extent of biofilm removal by the ultrasonic device was statistically similar. Only limited bactericidal effects were observed using both methods. Within the limitations of this preliminary study, the shock wave device was not able to reliably remove calculus but had the potential to remove biofilms by three log steps. To increase the efficacy, technical improvements are still required. This novel noninvasive intervention, however, merits further investigation.

Statistics

Citations

14 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

171 downloads since deposited on 15 Feb 2011
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Preventive Dentistry, Periodontology and Cariology
04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 December 2011
Deposited On:15 Feb 2011 13:58
Last Modified:07 Dec 2017 07:22
Publisher:Springer
ISSN:1432-6981
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s00784-010-0462-2
PubMed ID:20821262

Download

Download PDF  'Potential of shock waves to remove calculus and biofilm'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB
View at publisher