Header

UZH-Logo

Maintenance Infos

Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis


Kaas, A; Pfleger, C; Hansen, L; Buschard, K; Schloot, N C; Roep, B O; Mortensen, H B; Schoenle, E J (2010). Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis. Clinical and Experimental Immunology, 161(3):444-452.

Abstract

The progression of type 1 diabetes after diagnosis is poorly understood. Our aim was to assess the relation of disease progression of juvenile-onset type 1 diabetes, determined by preserved beta cell function the first year after diagnosis, with systemic cytokine concentrations and number of autoantibodies. Juvenile patients (n = 227) had a meal-stimulated C-peptide test 1 and 6 months after diagnosis. On the basis of the C-peptide course for the duration of 1-6 months, four progression groups were defined: patients with persistently low beta cell function ('stable-low'), rapid progressers, slow progressers and remitters. Serum concentrations of adiponectin, interleukin (IL)-1ra, inducible protein 10 (IP-10), IL-6 and glutamic acid decarboxylase (GAD), IA-2A and islet-cell antibodies (ICA) were measured at 1, 6 and 12 months. We found that adiponectin concentrations at 1 month predicted disease progression at 6 months (P = 0·04). Patients with low adiponectin had a higher probability of becoming remitters than rapid progressers, odds ratio 3·1 (1·3-7·6). At 6 and 12 months, adiponectin differed significantly between the groups, with highest concentrations among stable-low and rapid progressers patients (P = 0·03 and P = 0·006). IL-1ra, IP-10 and IL-6 did not differ between the groups at any time-point. The number of autoantibodies differed significantly between the groups at 1 month (P = 0·04), where rapid progressers had the largest number. There was no difference between the groups in human leucocyte antigen-associated risk. We define progression patterns distinguishing patients diagnosed with low beta cell function from those with rapid decline, slow decline or actual increase in beta cell function, pointing to different mechanisms of disease progression. We find that adiponectin concentration at 1 month predicts, and at 6 and 12 months associates with, distinct progression patterns.

Abstract

The progression of type 1 diabetes after diagnosis is poorly understood. Our aim was to assess the relation of disease progression of juvenile-onset type 1 diabetes, determined by preserved beta cell function the first year after diagnosis, with systemic cytokine concentrations and number of autoantibodies. Juvenile patients (n = 227) had a meal-stimulated C-peptide test 1 and 6 months after diagnosis. On the basis of the C-peptide course for the duration of 1-6 months, four progression groups were defined: patients with persistently low beta cell function ('stable-low'), rapid progressers, slow progressers and remitters. Serum concentrations of adiponectin, interleukin (IL)-1ra, inducible protein 10 (IP-10), IL-6 and glutamic acid decarboxylase (GAD), IA-2A and islet-cell antibodies (ICA) were measured at 1, 6 and 12 months. We found that adiponectin concentrations at 1 month predicted disease progression at 6 months (P = 0·04). Patients with low adiponectin had a higher probability of becoming remitters than rapid progressers, odds ratio 3·1 (1·3-7·6). At 6 and 12 months, adiponectin differed significantly between the groups, with highest concentrations among stable-low and rapid progressers patients (P = 0·03 and P = 0·006). IL-1ra, IP-10 and IL-6 did not differ between the groups at any time-point. The number of autoantibodies differed significantly between the groups at 1 month (P = 0·04), where rapid progressers had the largest number. There was no difference between the groups in human leucocyte antigen-associated risk. We define progression patterns distinguishing patients diagnosed with low beta cell function from those with rapid decline, slow decline or actual increase in beta cell function, pointing to different mechanisms of disease progression. We find that adiponectin concentration at 1 month predicts, and at 6 and 12 months associates with, distinct progression patterns.

Statistics

Citations

18 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:21 Feb 2011 08:46
Last Modified:05 Apr 2016 14:47
Publisher:Wiley-Blackwell
ISSN:0009-9104
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1365-2249.2010.04193.x
PubMed ID:20529086

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations