Header

UZH-Logo

Maintenance Infos

A biologically realistic cortical model of eye movement control in reading


Heinzle, J; Hepp, K; Martin, K A C (2010). A biologically realistic cortical model of eye movement control in reading. Psychological Review, 117(3):808-830.

Abstract

Reading is a highly complex task involving a precise integration of vision, attention, saccadic eye movements, and high-level language processing. Although there is a long history of psychological research in reading, it is only recently that imaging studies have identified some neural correlates of reading. Thus, the underlying neural mechanisms of reading are not yet understood. One very practical requirement of reading is that eye movements be precisely controlled and coordinated with the cognitive processes of reading. Here we present a biologically realistic model of the frontal eye fields that simulates the control of eye movements in human readers. The model couples processes of oculomotor control and cognition in a realistic cortical circuit of spiking neurons. A global rule that signals either "reading" or "not reading" switches the network's behavior from reading to scanning. In the case of reading, interaction with a cortical module that processed "words" allowed the network to read efficiently an array of symbols, including skipping of short words. Word processing and saccade buildup were both modeled by a race to threshold. In both reading and scanning, the network produces realistic distributions of fixation times when compared with human data.

Abstract

Reading is a highly complex task involving a precise integration of vision, attention, saccadic eye movements, and high-level language processing. Although there is a long history of psychological research in reading, it is only recently that imaging studies have identified some neural correlates of reading. Thus, the underlying neural mechanisms of reading are not yet understood. One very practical requirement of reading is that eye movements be precisely controlled and coordinated with the cognitive processes of reading. Here we present a biologically realistic model of the frontal eye fields that simulates the control of eye movements in human readers. The model couples processes of oculomotor control and cognition in a realistic cortical circuit of spiking neurons. A global rule that signals either "reading" or "not reading" switches the network's behavior from reading to scanning. In the case of reading, interaction with a cortical module that processed "words" allowed the network to read efficiently an array of symbols, including skipping of short words. Word processing and saccade buildup were both modeled by a race to threshold. In both reading and scanning, the network produces realistic distributions of fixation times when compared with human data.

Statistics

Citations

15 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 January 2010
Deposited On:04 Mar 2011 16:49
Last Modified:05 Apr 2016 14:51
Publisher:American Psychological Association
Series Name:Psychological Review
Number of Pages:22
ISSN:0033-295X
Publisher DOI:https://doi.org/10.1037/a0019575
PubMed ID:20658854

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations