Header

UZH-Logo

Maintenance Infos

Consonance and the closure method in multiple testing


Romano, Joseph P; Shaikh, Azeem M; Wolf, Michael (2011). Consonance and the closure method in multiple testing. The International Journal of Biostatistics, 7(1):online.

Abstract

Consider the problem of testing s null hypotheses simultaneously. In order to deal with the multiplicity problem, the classical approach is to restrict attention to multiple testing procedures that control the familywise error rate (FWE). The closure method of Marcus et al. (1976) reduces the problem of constructing such procedures to one of constructing single tests that control the usual probability of a Type 1 error. It was shown by Sonnemann (1982, 2008) that any coherent multiple testing procedure can be constructed using the closure method. Moreover, it was shown by Sonnemann and Finner (1988) that any incoherent multiple testing procedure can be replaced by a coherent multiple testing procedure which is at least as good. In this paper, we first show an analogous result for dissonant and consonant multiple testing procedures. We show further that, in many cases, the improvement of the consonant multiple testing procedure over the dissonant multiple testing procedure may in fact be strict in the sense that it has strictly greater probability of detecting a false null hypothesis while still maintaining control of the FWE. Finally, we show how consonance can be used in the construction of some optimal maximin multiple testing procedures. This last result is especially of interest because there are very few results on optimality in the multiple testing literature.

Abstract

Consider the problem of testing s null hypotheses simultaneously. In order to deal with the multiplicity problem, the classical approach is to restrict attention to multiple testing procedures that control the familywise error rate (FWE). The closure method of Marcus et al. (1976) reduces the problem of constructing such procedures to one of constructing single tests that control the usual probability of a Type 1 error. It was shown by Sonnemann (1982, 2008) that any coherent multiple testing procedure can be constructed using the closure method. Moreover, it was shown by Sonnemann and Finner (1988) that any incoherent multiple testing procedure can be replaced by a coherent multiple testing procedure which is at least as good. In this paper, we first show an analogous result for dissonant and consonant multiple testing procedures. We show further that, in many cases, the improvement of the consonant multiple testing procedure over the dissonant multiple testing procedure may in fact be strict in the sense that it has strictly greater probability of detecting a false null hypothesis while still maintaining control of the FWE. Finally, we show how consonance can be used in the construction of some optimal maximin multiple testing procedures. This last result is especially of interest because there are very few results on optimality in the multiple testing literature.

Statistics

Citations

3 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

64 downloads since deposited on 01 Mar 2011
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:2011
Deposited On:01 Mar 2011 10:22
Last Modified:05 Apr 2016 14:52
Publisher:Berkeley Electronic Press
ISSN:1557-4679
Publisher DOI:https://doi.org/10.2202/1557-4679.1300

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 832kB
View at publisher
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations