Header

UZH-Logo

Maintenance Infos

Single-pass multi-view volume rendering


Hübner, T; Pajarola, R (2007). Single-pass multi-view volume rendering. In: IADIS International Conference on Computer Graphics and Visualization, Lisbon, Portugal, 5 July 2007 - 7 July 2007.

Abstract

In this paper, we introduce a new direct volume rendering (DVR) algorithm for multi-view auto-stereoscopic displays. Common multi-view methods perform multi-pass rendering (one pass for each view) and subsequent image compositing and masking for generating multiple views. The rendering time increases therefore linearly with the number of views, but sufficient frame-rates are achieved by sub-resolution rendering, at the expense of degraded image quality. To overcome these disadvantages for DVR, our algorithm calculates multiple views directly on a per-fragment basis on the GPU in a single rendering pass, including sub-pixel wavelength selective views for high-quality auto-stereo display systems. Moreover, our approach retains full resolution rendering, preserving best possible image quality, while achieving higher frame rates than present multi-view rendering methods. We describe our multi-view volume rendering algorithm and its implementation using programmable fragment shaders. Experimental results demonstrate our algorithm's improvement compared to prior multi-view volume rendering solutions.

Abstract

In this paper, we introduce a new direct volume rendering (DVR) algorithm for multi-view auto-stereoscopic displays. Common multi-view methods perform multi-pass rendering (one pass for each view) and subsequent image compositing and masking for generating multiple views. The rendering time increases therefore linearly with the number of views, but sufficient frame-rates are achieved by sub-resolution rendering, at the expense of degraded image quality. To overcome these disadvantages for DVR, our algorithm calculates multiple views directly on a per-fragment basis on the GPU in a single rendering pass, including sub-pixel wavelength selective views for high-quality auto-stereo display systems. Moreover, our approach retains full resolution rendering, preserving best possible image quality, while achieving higher frame rates than present multi-view rendering methods. We describe our multi-view volume rendering algorithm and its implementation using programmable fragment shaders. Experimental results demonstrate our algorithm's improvement compared to prior multi-view volume rendering solutions.

Statistics

Downloads

62 downloads since deposited on 29 Mar 2011
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:7 July 2007
Deposited On:29 Mar 2011 09:26
Last Modified:21 Nov 2017 15:22
Related URLs:http://www.cgv-conf.org/2007/

Download

Download PDF  'Single-pass multi-view volume rendering'.
Preview
Filetype: PDF
Size: 2MB