Header

UZH-Logo

Maintenance Infos

A study of soil methane sink regulation in two grasslands exposed to drought and N fertilization


Hartmann, A A; Buchmann, N; Niklaus, P A (2011). A study of soil methane sink regulation in two grasslands exposed to drought and N fertilization. Plant and Soil, 342(1-2):265-275.

Abstract

Oxidation by soil bacteria is the only biological sink for atmospheric methane (CH4). There are substantial uncertainties regarding the global size of this sink, in part because the ecological controls of the involved processes are not well understood to date. We have investigated effects of severe summer drought and of nitrogen inputs (ammonium nitrate or cattle urine) on soil CH4 fluxes in a field experiment. Soil moisture was the most important factor regulating the temporal dynamics of CH4 fluxes. Simulated drought episodes altered the soil’s water balance throughout the year, increasing CH4 oxidation by 50% on an annual basis. N fertilizers exerted only small and transient effects at the ecosystem level. Laboratory incubations suggested that effects differed between soil layers, with larger effects of drought and N application in the top soil than in deeper layers. With soil moisture being the primary controlling factor of methanotrophy, a detailed understanding of the ecosystem’s water balance is required to predict CH4 budgets under future climatic conditions.

Abstract

Oxidation by soil bacteria is the only biological sink for atmospheric methane (CH4). There are substantial uncertainties regarding the global size of this sink, in part because the ecological controls of the involved processes are not well understood to date. We have investigated effects of severe summer drought and of nitrogen inputs (ammonium nitrate or cattle urine) on soil CH4 fluxes in a field experiment. Soil moisture was the most important factor regulating the temporal dynamics of CH4 fluxes. Simulated drought episodes altered the soil’s water balance throughout the year, increasing CH4 oxidation by 50% on an annual basis. N fertilizers exerted only small and transient effects at the ecosystem level. Laboratory incubations suggested that effects differed between soil layers, with larger effects of drought and N application in the top soil than in deeper layers. With soil moisture being the primary controlling factor of methanotrophy, a detailed understanding of the ecosystem’s water balance is required to predict CH4 budgets under future climatic conditions.

Statistics

Citations

23 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Ammonium nitrat, Cattle urine, Drought, Enzymatic inhibition, Grazing
Language:German
Date:2011
Deposited On:09 Jun 2011 11:09
Last Modified:07 Dec 2017 08:26
Publisher:Springer
ISSN:0032-079X
Publisher DOI:https://doi.org/10.1007/s11104-010-0690-x

Download

Full text not available from this repository.
View at publisher