Small Supratentorial, Extraaxial Primitive Neuroectodermal Tumor Causing Large Intracerebral Hematoma
—Case Report—

Jan-Karl BURKHARDT,1 Ralf A. KOCKRO,1 Hildegard DOHMEN-SCHEUFLER,2 Christoph M. WOERNLE,1 David BELLUT,3 Spyros KOLLIAS,3 and Helmut BERTALANFFY1

Departments of1Neurosurgery, 2Neuropathology, and 3Neuroradiology, University Hospital, University of Zurich, Zurich, Switzerland

Abstract

A 16-year-old boy presented with an unusual case of a supratentorial, extraaxial small round blue cell tumor of the central nervous system, which was most likely a primitive neuroectodermal tumor (PNET). Preoperative computed tomography and magnetic resonance imaging showed a large multistage hematoma in the left central region. Intraoperatively, a small, superficial tumorous lesion was found between the sagittal sinus and a large cortical vein hidden by the hematoma. The histological diagnosis was PNET. This tumor is one of the most aggressive intracerebral tumors, not only in children, so treatment strategies must be early, profound, and interdisciplinary. This case represents an important example of atypical extraaxial appearance of this lesion, which should be considered in the differential diagnosis of cortical or subcortical hemorrhage, since complete resection of this lesion is critical for the successful treatment and outcome.

Key words: primitive neuroectodermal tumor, intracerebral hemorrhage, high-grade brain tumor, neurosurgery

Introduction

Supratentorial primitive neuroectodermal tumors (PNETs) belong to a heterogeneous group of undifferentiated or poorly differentiated tumors called small round blue cell tumors (SRBCTs) of the central nervous system (CNS), which occur predominantly in children or young adults. Recently, supratentorial PNETs were grouped together with all extracerebellar PNETs and renamed CNS PNET. Supratentorial PNETs are less common than cerebellar PNETs and account for 2–3% of all childhood brain tumors with a peak in the first 3 years of life. Preoperative neuroradiological findings vary and may consist of an enhanced lesion on T1- and T2-weighted magnetic resonance (MR) imaging or computed tomography (CT) with contrast medium, associated with cystic and necrotic portions, perifocal edema, or hemorrhage. Initiation of early and interdisciplinary adjuvant treatment for PNETs after complete neurosurgical resection is critical for the patient, since these tumors show much more aggressive behavior and the treatment options are poorly defined compared to infratentorial counterparts.

We describe a case of SRBCT obscured by a large intracerebral hemorrhage on preoperative imaging and...
Fig. 1 A–C: Preoperative computed tomography scans with axial (A), coronal (B), and sagittal (C) reconstruction indicating the multistage hemorrhage. D–I: Axial T1-weighted (D), T1-weighted with contrast medium (E), and T2-weighted (F), as well as sagittal (G) and coronal (H) reconstructed T1-weighted with contrast medium and coronal T2-weighted (I) magnetic resonance images showing the hemorrhage located next to the sagittal sinus and a cortical vein. Arrow indicates approximately the area of the tumor which was found intraoperatively.

hardly visible intraoperatively, which complicated the establishment of the diagnosis.

Case Report

A 16-year-old boy with previously unremarkable medical history was referred from a community hospital to our department with a progressive sensorimotor brachiofacial hemisindrome on the right. His symptoms had developed mildly over 2 weeks, but he developed nearly complete paralysis of the right arm while playing in a field hockey game on the day of admission.

CT and MR imaging showed a large (5.2 × 4.8 × 4.7 cm) hemorrhage in the left central area with signs of multistage bleeding with little perifocal edema (Fig. 1). No tumor was visible. CT angiography, MR angiography, and conventional angiography revealed no signs of vascular lesions, in particular no arteriovenous or venous malformations.

Emergency neurosurgical resection was performed within the first hours of admission due to his decreasing level of consciousness. During surgery the patient was placed in the supine position and his head was fixed with a Mayfield head holder. The hematoma was localized using neuronavigation and a craniotomy was performed. After dura opening, the superficial part of the hematoma was visible at the level of the cortical surface, and the hematoma could be quickly removed by suctioning. On closer inspection, we discovered a small (approx. 3 × 3 mm), high cortical, superficial lesion, seemingly located in a subarachnoid plane between the sagittal sinus and a large cortical vein (Fig. 2). The lesion was soft, highly vascularized, and bright red. The lesion was removed gross totally. The rest of the hematoma cavity showed no macroscopic abnormalities.

Histological examination revealed a heterogeneous, pleomorphic tumor with unclear borders and a high proliferation index (Ki-67) of over 30% with atypic mitotic and apoptotic pattern (Fig. 3A, B, D). The resected lesion revealed the criteria for SRBCT and the diagnosis was visible at the level of the cortical surface, and the hematoma could be quickly removed by suctioning. On closer inspection, we discovered a small (approx. 3 × 3 mm), high cortical, superficial lesion, seemingly located in a subarachnoid plane between the sagittal sinus and a large cortical vein (Fig. 2). The lesion was soft, highly vascularized, and bright red. The lesion was removed gross totally. The rest of the hematoma cavity showed no macroscopic abnormalities.

Histological examination revealed a heterogeneous, pleomorphic tumor with unclear borders and a high proliferation index (Ki-67) of over 30% with atypic mitotic and apoptotic pattern (Fig. 3A, B, D). The resected lesion revealed the criteria for SRBCT and the diagnosis was
Small Extraaxial Tumor Caused Large Intracerebral Hematoma

Fig. 4 Postoperative computed tomography scans (A–C) and T1-weighted magnetic resonance images with contrast medium (D–F) with axial (A, D), coronal (B, E), and sagittal (C, F) reconstruction showing complete removal of the hematoma and no signs of tumor remnant.

The postoperative course was uneventful and the hemiparesis of the right arm improved significantly during the first postoperative week. Postoperative CT and MR imaging showed complete removal of the hematoma and no signs of tumor remnant (Fig. 4). The postoperative staging revealed negative lumbar puncture and biopsies of bone marrow and muscle were negative for malignant cells. Axial MR imaging of the spine showed a small (0.2 × 0.2 cm) single intraspinal enhanced lesion (T11) suggestive of leptomeningeal dissemination, which could not be confirmed by positron emission tomography imaging and follow-up MR imaging 3 months later. After sperm cryopreservation, adjuvant radiation with boost to the whole neuraxis and brain was initiated 4 weeks after surgery for 6 weeks followed by chemotherapy with cisplatin.

Discussion

SRBCT including CNS or peripheral PNETs are high-grade malignant cerebral tumors, which affect both the pediatric and adult population. Treatment is often challenging and frustrating due to the poor prognosis, and depends on many risk factors such as localization of the lesion and grade of staging at diagnosis. Compared to other embryonic malignant tumors such as medulloblastoma with better established treatment regimes, the optimum treatment of this rare and heterogeneous tumor group is still the subject of research and many clinical studies are ongoing. Today, surgery is recommended for the care of PNET patients (>3 years of age) followed by radiation and chemotherapy. No standards have been established, high dose chemotherapy with different regimes may be better before radiation in younger children. In contrast, radiation directly after surgery is recommended before chemotherapy in older children or adults.

On this account, cases of SRBCT need to be analyzed in detail in order to gain data for future treatment options. Until then, it is critical to guarantee the best starting position for radiation and chemotherapy by surgical resection, and therefore identification of this lesion as soon as possible is important. Due to the heterogeneity of this embryonic tumor group, neuroradiological findings are usually non-uniform and may hinder or delay the diagnosis. For example, analysis of 13 pediatric patients with CNS PNETs found heterogeneous neuroradiological findings whereas only 3 cases revealed radiological signs of hemorrhage. In contrast to the uncommon appearance of hemorrhagic areas, cystic parts and foci of calcification were more frequently found as described previously. However, in the present case, the lesion was surrounded by extensive intracerebral bleeding, and the clear and distinctive criteria for these tumors, such as cystic, necrotic, or contrast-enhanced parts, could not be detected on CT or MR imaging. The macroscopic view during surgery showed a small highly vascularized tumor, which could be completely resected. Although the precise pathophysiological mechanisms of hemorrhage into brain tumors are still under investigation, primitive tumors carry higher risk of bleeding than other types. The cause might be found in the dysmorphic configuration of the tumor vessels with endothelial abnormalities such as alteration of tight junctions, which render these lesions more hemorrhage-prone.

In this case, histological examination revealed the most likely criteria for peripheral PNET, based on the absence of staining against neuroepithelial antigens, and positive staining for CD99 in the membrane. Ewing family of tumors, especially the subgroup peripheral PNET and Ewing’s sarcoma, usually highly express the MIC2 gene product (CD99) and show chromosomal translocations such as t(11, 22)(q22;q12). In contrast, CNS PNETs are reported to be negative for both these features. In our case, the histological findings and extraaxial localization of the lesion strongly suggested that this SRBCT was a peripheral PNET rather than a CNS PNET, although no chromosomal translocations were detected in this tumor.

The present case shows that a small supratentorial, extraaxial PNET can be the cause of extensive acute intracerebral hemorrhage, although the tumor may not be detectable on preoperative MR imaging or CT. The present tumor was hidden in a small superficial, submeningeal pocket next to a cortical vein, so meticulous search for a tumorous lesion during hemorrhage evacuation is important, especially in the pediatric age group. Most aggressive tumor removal as soon as possible is critical to ensure the best start for radiation and chemotherapy in patients with SRBCT.
PNET should be considered in this heterogeneous tumor
group with non-uniform neuroradiological findings,
in particular with pediatric patients.

References
1) Altman N, Fitz CR, Chuang S, Harwood-Nash D, Cotter C,
Armstrong D: Radiologic characteristics of primitive neu-
roectodermal tumors in children. AJNR Am J Neuroradiol 6:
15–18, 1985
2) Bano S, Yadav SN, Garga UC: Case Report: Intracranial
peripheral primitive neuroectodermal tumor—Ewing’s sar-
coma of dura with transcalvarial-subgaleal extension: An
unusual radiological presentation. Indian J Radiol Imaging:
19: 305–307, 2009
3) Chang CH, Housepian EM, Herbert C Jr: An operative stag-
ing system and a megavoltage radiotherapeutic technic for
4) Chawla A, Emmanuel JV, Seow WT, Lou J, Teo HE, Lim CC:
Paediatric PNET: pre-surgical MRI features. Clin Radiol 62:
43–52, 2007
5) Chintagumpala M, Hassall T, Palmer S, Ashley D, Wallace
D, Kasow K, Merchant TE, Krassin MJ, Dauser R, Boop F,
pilot study of risk-adapted radiotherapy and chemotherapy
in patients with supratentorial PNET. Neuro Oncol 11:
33–40, 2009
6) Dai Al, Backstrom JW, Burger PC, Duffner PK: Supratentori-
al primitive neuroectodermal tumors of infancy: clinical and
7) Fangusaro J, Finlay J, Sposto R, Ji L, Saly M, Zacharoulis S,
Asgharzadeh S, Abromowitch M, Olsheski R, Halpern S,
Mangarov M, Dunkel I, Miller DC, Allen J, Gardner S: Intensive
chemotherapy followed by consolidative myeloablative
chemotherapy with autologous hematopoietic cell rescue
(AuHCR) in young children with newly diagnosed supraten-
torial primitive neuroectodermal tumors (sPNETs): report of
the Head Start I and II experience. Pediatr Blood Cancer 50:
312–318, 2008
8) Fangusaro J, Massimino M, Rutkowski S, Gururangan S:
Non-cerebellar peripheral primitive neuroectodermal tumors
(PNET): summary of the Milan consensus and state of the art
workshop on marrow ablative chemotherapy with hematopoiet-
ic cell rescue for malignant brain tumors of childhood and
9) Gregorio A, Corrias MV, Castriconi R, Dondero A, Mosconi
M, Gambini C, Moretta L, Bottino C: Small round blue cell
neoplasms of the central nervous system frequently harbor dele-
tions of the CDKN2A locus and other genomic aberrations distinct from
medulloblastomas. Genes Chromosomes Cancer 46: 839–851,
2007
10) Johnston DL, Keene DL, Lafay-Cousin L, Steinbok P, Sun W,
Carass AS, Crooks B, Strother D, Wilson B, Odenne I, Eisen-
stat DD, Mpofu C, Zelcer S, Huang A, Bouffet E: Supraten-
torial primitive neuroectodermal tumors: a Canadian
pediatric brain tumor consortium report. J Neurooncol 86:
11) Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC,
Joupet A, Scheithauer BW, Kleihues P: The 2007 WHO clas-
sification of tumours of the central nervous system. Acta
12) MacDonald TJ: Aggressive infantile embryonal tumors. J
13) Marec-Berard P, Jouvet A, Thieze P, Kalifa C, Doz F, Frap-
paz D: Supratentorial embryonal tumors in children under 5
years of age: an SFOP study of treatment with postoperative
KR, Prados MD, Berger MS, Wara WM, Haas-Kogan DA:
Radiation is an important component of multimodality ther-
apy for pediatric non-pineal supratentorial primitive neuro-
ectodermal tumors. Int J Radiat Oncol Biol Phys 72:
1319–1323, 2008
15) McLone DG: Ultrastructure of the vasculature of central
nervous system tumors of childhood. Childs Brain 6: 242–254,
1980
16) Meis-Kindblom JM, Stenman G, Kindblom LG: Differential
diagnosis of small round cell tumors. Semin Diagn Pathol 13:
213–241, 1996
17) Mueller S, Chang S: Pediatric brain tumors: current treat-
ment strategies and future therapeutic approaches. Neu-
rotherapeutics 6: 570–586, 2009
F, Wittmann A, Devens F, von Hoff K, Rutkowski S, Kulozok
A, Radlwinser B, Scheuren W, Lichter P, Korschunov A:
Supratentorial primitive neuroectodermal tumors of the cen-
tral nervous system frequently harbor deletions of the
CDKN2A locus and other genomic aberrations distinct from
medulloblastomas. Genes Chromosomes Cancer 46: 839–851,
2007
19) Pizer BL, Weston CL, Robinson KJ, Ellison DW, Ironside J,
CC, Taylor RE: Analysis of patients with supratentorial
primitive neuro-ectodermal tumours entered into the
SIOP/UKCCSG PNET 3 study. Eur J Cancer 42: 1120–1128,
2006
20) Pomeroy SL, Tamayo P, Gaasbeek M, Sturla LM, Angelo
M, McLaughlin ME, Kim YJ, Goumnerova LC, Black PM,
Lau C, Allen JC, Zwaag D, Olson JM, Curran T, Wetmore C,
Biegel J, Poggio T, Mukherjee S, Rifkin R, Califano A,
Stolovitzky G, Louis DN, Mesirov J, Lander ES, Golub TR:
Prediction of central nervous system embryonal tumour out-
21) Tekkok IH, Ventureyra EC: Spontaneous intracranial
hemorrhage of structural origin during the first year of life.
22) Timmermann B, Kortmann RD, Kuhl J, Meisner C, Dieck-
mann K, Pietsch T, Bamberg M: Role of radiotherapy in the
 treatment of supratentorial primitive neuroectodermal
tumors in childhood: results of the prospective German
brain tumor trials HIT 88/89 and 91. J Clin Oncol 20:
842–849, 2002

Address reprint requests to: Jan-Karl Burkhardt, MD, Department
of Neurosurgery, University Hospital Zurich, Frauenklinik-
str. 10, 8091 Zurich, Switzerland.
e-mail: JanKarl.Burkhardt@gmail.com

Neurol Med Chir (Tokyo) 51, June, 2011