Header

UZH-Logo

Maintenance Infos

Presynaptic {alpha}2-GABAA receptors in primary afferent depolarization and spinal pain control


Witschi, R; Punnakkal, P; Paul, J; Walczak, J S; Cervero, F; Fritschy, J M; Kuner, R; Keist, R; Rudolph, U; Zeilhofer, H U (2011). Presynaptic {alpha}2-GABAA receptors in primary afferent depolarization and spinal pain control. Journal of Neuroscience, 31(22):8134-8142.

Abstract

Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of a major subpopulation of GABA(A) receptors (those containing the α2 subunit) to spinal pain control in mice lacking α2-GABA(A) receptors specifically in primary nociceptors (sns-α2(-/-) mice). sns-α2(-/-) mice exhibited GABA(A) receptor currents and dorsal root potentials of normal amplitude in vitro, and normal response thresholds to thermal and mechanical stimulation in vivo, and developed normal inflammatory and neuropathic pain sensitization. However, the positive allosteric GABA(A) receptor modulator diazepam (DZP) had almost completely lost its potentiating effect on PAD and presynaptic inhibition in vitro and a major part of its spinal antihyperalgesic action against inflammatory hyperalgesia in vivo. Our results thus show that part of the antihyperalgesic action of spinally applied DZP occurs through facilitated activation of GABA(A) receptors residing on primary nociceptors.

Abstract

Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of a major subpopulation of GABA(A) receptors (those containing the α2 subunit) to spinal pain control in mice lacking α2-GABA(A) receptors specifically in primary nociceptors (sns-α2(-/-) mice). sns-α2(-/-) mice exhibited GABA(A) receptor currents and dorsal root potentials of normal amplitude in vitro, and normal response thresholds to thermal and mechanical stimulation in vivo, and developed normal inflammatory and neuropathic pain sensitization. However, the positive allosteric GABA(A) receptor modulator diazepam (DZP) had almost completely lost its potentiating effect on PAD and presynaptic inhibition in vitro and a major part of its spinal antihyperalgesic action against inflammatory hyperalgesia in vivo. Our results thus show that part of the antihyperalgesic action of spinally applied DZP occurs through facilitated activation of GABA(A) receptors residing on primary nociceptors.

Statistics

Citations

61 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

201 downloads since deposited on 19 Jul 2011
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:19 Jul 2011 10:57
Last Modified:07 Dec 2017 08:38
Publisher:Society for Neuroscience
ISSN:0270-6474
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.6328-10.2011
PubMed ID:21632935

Download

Download PDF  'Presynaptic {alpha}2-GABAA receptors in primary afferent depolarization and spinal pain control'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher