Header

UZH-Logo

Maintenance Infos

SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer


Wilbertz, T; Wagner, P; Petersen, K F; Stiedl, A C; Scheble, V J; Maier, S; Reischl, M; Mikut, R; Altorki, N K; Moch, H; Fend, F; Staebler, A; Bass, A J; Meyerson, M; Rubin, M A; Soltermann, A; Lengerke, C; Perner, S (2011). SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Modern Pathology, 24(7):944-953.

Abstract

The transcription factor SOX2 (3q26.3-q27) is a key regulator of foregut development and an embryonic stem cell factor cooperating during induction of pluripotency in terminally differentiated somatic cells. Recently, we found SOX2 to be amplified in a subset of squamous cell lung and esophageal cancers. The aim of this study was to explore the prognostic role of SOX2 in a large series of squamous cell carcinomas and adenocarcinomas of the lung. A total of 891 samples from two independent population-based cohorts were assessed by fluorescence in situ hybridization and immunohistochemistry. Furthermore, we assessed for associations between SOX2 amplification/upregulation and clinicopathological features. Similar results were found in the two cohorts. Within squamous cell carcinoma cases, 8% high-level as well as 68 and 65% low-level SOX2 amplifications occurred in the two cohorts, respectively. In adenocarcinomas, no high-level amplification was found and low-level amplification occurred in 6% of the two cohorts. Within squamous cell carcinomas of one cohort, SOX2 amplification was associated with lower tumor grade, while higher levels of SOX2 expression were related to younger age, smaller tumor size, and lower probability of angiolymphatic invasion and metastasis. High SOX2 expression levels proved to be a marker for prolonged overall survival among patients with squamous cell carcinomas. In conclusion, SOX2 amplification and upregulation are frequent events in squamous cell carcinomas of the lung and are associated with indicators of favorable prognosis.

Abstract

The transcription factor SOX2 (3q26.3-q27) is a key regulator of foregut development and an embryonic stem cell factor cooperating during induction of pluripotency in terminally differentiated somatic cells. Recently, we found SOX2 to be amplified in a subset of squamous cell lung and esophageal cancers. The aim of this study was to explore the prognostic role of SOX2 in a large series of squamous cell carcinomas and adenocarcinomas of the lung. A total of 891 samples from two independent population-based cohorts were assessed by fluorescence in situ hybridization and immunohistochemistry. Furthermore, we assessed for associations between SOX2 amplification/upregulation and clinicopathological features. Similar results were found in the two cohorts. Within squamous cell carcinoma cases, 8% high-level as well as 68 and 65% low-level SOX2 amplifications occurred in the two cohorts, respectively. In adenocarcinomas, no high-level amplification was found and low-level amplification occurred in 6% of the two cohorts. Within squamous cell carcinomas of one cohort, SOX2 amplification was associated with lower tumor grade, while higher levels of SOX2 expression were related to younger age, smaller tumor size, and lower probability of angiolymphatic invasion and metastasis. High SOX2 expression levels proved to be a marker for prolonged overall survival among patients with squamous cell carcinomas. In conclusion, SOX2 amplification and upregulation are frequent events in squamous cell carcinomas of the lung and are associated with indicators of favorable prognosis.

Statistics

Citations

94 citations in Web of Science®
98 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Pathology and Molecular Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:02 Aug 2011 14:34
Last Modified:07 Dec 2017 08:43
Publisher:Nature Publishing Group
ISSN:0893-3952
Publisher DOI:https://doi.org/10.1038/modpathol.2011.49
PubMed ID:21460799

Download

Full text not available from this repository.
View at publisher