Header

UZH-Logo

Maintenance Infos

Microdamage accumulation changes according to animal mass: an intraspecies investigation


Brianza, S Z M; D'Amelio, P; Pugno, N; Zini, E; Zatelli, A; Pluviano, F; Cabiale, K; Galloni, M; Isaia, G C (2011). Microdamage accumulation changes according to animal mass: an intraspecies investigation. Calcified Tissue International, 88(5):409-415.

Abstract

The fatigue life of a structure is also influenced by its size. Statistically, a bone from a large animal is expected to bear a higher risk of stress fracture if compared to the same bone from a small animal of the same species. This is not documented in the dog, where individuals can have a 40 times difference in body mass. We investigated the effect of body size on cortical bone microdamage accumulation, cortical microstructural organization (porosity, osteon area, and osteocyte lacunar density), and turnover in dogs with a wide body mass range. The aim was to understand and mathematically model how the bone tissue copes with the microdamage accumulation linked to body mass increase. Calcified transverse cortical sections of 18 canine radii of remarkably different size were examined by means of a standard bulk-staining technique and histomorphometric standard algorithms. Relationships between the investigated histomorphometric variables age, sex and mass were analyzed by general linear multivariate models and exponential equations. Type and location of microdamage and bone turnover were not influenced by body mass. Gender did not influence any parameter. Age influenced bone turnover and activation frequency. Microcrack density was influenced by bone mass. Bones had a similar microstructural organization within the same species regardless of the subject's dimension. Microdamage accumulation is inversely related to bone mass, whereas bone turnover is mass-invariant. We theorize a mass-related change in the bone fracture toughness targeted to reach an optimal unique dimensionless curve for fatigue life.

Abstract

The fatigue life of a structure is also influenced by its size. Statistically, a bone from a large animal is expected to bear a higher risk of stress fracture if compared to the same bone from a small animal of the same species. This is not documented in the dog, where individuals can have a 40 times difference in body mass. We investigated the effect of body size on cortical bone microdamage accumulation, cortical microstructural organization (porosity, osteon area, and osteocyte lacunar density), and turnover in dogs with a wide body mass range. The aim was to understand and mathematically model how the bone tissue copes with the microdamage accumulation linked to body mass increase. Calcified transverse cortical sections of 18 canine radii of remarkably different size were examined by means of a standard bulk-staining technique and histomorphometric standard algorithms. Relationships between the investigated histomorphometric variables age, sex and mass were analyzed by general linear multivariate models and exponential equations. Type and location of microdamage and bone turnover were not influenced by body mass. Gender did not influence any parameter. Age influenced bone turnover and activation frequency. Microcrack density was influenced by bone mass. Bones had a similar microstructural organization within the same species regardless of the subject's dimension. Microdamage accumulation is inversely related to bone mass, whereas bone turnover is mass-invariant. We theorize a mass-related change in the bone fracture toughness targeted to reach an optimal unique dimensionless curve for fatigue life.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2011
Deposited On:08 Aug 2011 07:31
Last Modified:05 Apr 2016 14:58
Publisher:Springer
ISSN:0171-967X
Publisher DOI:https://doi.org/10.1007/s00223-011-9470-8
PubMed ID:21331568

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations