Header

UZH-Logo

Maintenance Infos

MicroRNA-96 directly inhibits γ-Globin expression in human erythropoiesis


Azzouzi, I; Moest, H; Winkler, J; Fauchère, J C; Gerber, A P; Wollscheid, B; Stoffel, M; Schmugge, M; Speer, O (2011). MicroRNA-96 directly inhibits γ-Globin expression in human erythropoiesis. PLoS ONE, 6(7):e22838.

Abstract

Fetal hemoglobin, HbF (α2γ2), is the main hemoglobin synthesized up to birth, but it subsequently declines and adult hemoglobin, HbA (α2β2), becomes predominant. Several studies have indicated that expression of the HbF subunit γ-globin might be regulated post-transcriptionally. This could be confered by ~22-nucleotide long microRNAs that associate with argonaute proteins to specifically target γ-globin mRNAs and inhibit protein expression. Indeed, applying immunopurifications, we found that γ-globin mRNA was associated with argonaute 2 isolated from reticulocytes that contain low levels of HbF (<1%), whereas association was significantly lower in reticulocytes with high levels of HbF (90%). Comparing microRNA expression in reticulocytes from cord blood and adult blood, we identified several miRNAs that were preferentially expressed in adults, among them miRNA-96. The overexpression of microRNA-96 in human ex vivo erythropoiesis decreased γ-globin expression by 50%, whereas the knock-down of endogenous microRNA-96 increased γ-globin expression by 20%. Moreover, luciferase reporter assays showed that microRNA-96 negatively regulates expression of γ-globin in HEK293 cells, which depends on a seedless but highly complementary target site located within the coding sequence of γ-globin. Based on these results we conclude that microRNA-96 directly suppresses γ-globin expression and thus contributes to HbF regulation.

Abstract

Fetal hemoglobin, HbF (α2γ2), is the main hemoglobin synthesized up to birth, but it subsequently declines and adult hemoglobin, HbA (α2β2), becomes predominant. Several studies have indicated that expression of the HbF subunit γ-globin might be regulated post-transcriptionally. This could be confered by ~22-nucleotide long microRNAs that associate with argonaute proteins to specifically target γ-globin mRNAs and inhibit protein expression. Indeed, applying immunopurifications, we found that γ-globin mRNA was associated with argonaute 2 isolated from reticulocytes that contain low levels of HbF (<1%), whereas association was significantly lower in reticulocytes with high levels of HbF (90%). Comparing microRNA expression in reticulocytes from cord blood and adult blood, we identified several miRNAs that were preferentially expressed in adults, among them miRNA-96. The overexpression of microRNA-96 in human ex vivo erythropoiesis decreased γ-globin expression by 50%, whereas the knock-down of endogenous microRNA-96 increased γ-globin expression by 20%. Moreover, luciferase reporter assays showed that microRNA-96 negatively regulates expression of γ-globin in HEK293 cells, which depends on a seedless but highly complementary target site located within the coding sequence of γ-globin. Based on these results we conclude that microRNA-96 directly suppresses γ-globin expression and thus contributes to HbF regulation.

Statistics

Citations

27 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

234 downloads since deposited on 08 Aug 2011
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Interdisciplinary PhD Projects
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:08 Aug 2011 08:14
Last Modified:07 Dec 2017 08:45
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0022838
PubMed ID:21829531

Download

Download PDF  'MicroRNA-96 directly inhibits γ-Globin expression in human erythropoiesis'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)