Characterization of MtnE, the fifth metallothionein member in Drosophila

Atanesyan, L; Günther, V; Celniker, S E; Georgiev, O; Schaffner, W

Abstract: Metallothioneins (MTs) constitute a family of cysteine-rich, low molecular weight metal-binding proteins which occur in almost all forms of life. They bind physiological metals, such as zinc and copper, as well as nonessential, toxic heavy metals, such as cadmium, mercury, and silver. MT expression is regulated at the transcriptional level by metal-regulatory transcription factor 1 (MTF-1), which binds to the metal-response elements (MREs) in the enhancer/promoter regions of MT genes. Drosophila was thought to have four MT genes, namely, MtnA, MtnB, MtnC, and MtnD. Here we characterize a new fifth member of Drosophila MT gene family, coding for metallothionein E (MtnE). The MtnE transcription unit is located head-to-head with the one of MtnD. The intervening sequence contains four MREs which bind, with different affinities, to MTF-1. Both of the divergently transcribed MT genes are completely dependent on MTF-1, whereby MtnE is consistently more strongly transcribed. MtnE expression is induced in response to heavy metals, notably copper, mercury, and silver, and is upregulated in a genetic background where the other four MTs are missing.

DOI: https://doi.org/10.1007/s00775-011-0825-4

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-49284
Accepted Version

Originally published at:
DOI: https://doi.org/10.1007/s00775-011-0825-4
Title:

Characterization of MtnE, the fifth metallothionein member in Drosophila

Authors: Lilit Atanesyan¹,², Viola Günther¹, Susan E. Celniker³, Oleg Georgiev¹ and Walter Schaffner¹,*

¹Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland;
²Life Science Zurich Graduate School, University of Zurich/ETH Zurich, Switzerland;
³Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 97420, USA.

*To whom correspondence should be addressed:

Prof. Walter Schaffner
Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
phone: +41 44 635 31 50/51; fax: +41 44 635 68 11;
e-mail: walter.schaffner@imls.uzh.ch
Abstract

Metallothioneins (MTs) constitute a family of cysteine-rich, low molecular weight metal-binding proteins which occur in almost all forms of life. They bind physiological metals, such as zinc and copper, as well as non-essential, toxic heavy metals, such as cadmium, mercury and silver. MT expression is regulated at the transcriptional level by the metal-responsive transcription factor-1 (MTF-1), which binds to the metal response elements (MREs) in the enhancer/promoter regions of MT genes. *Drosophila* was thought to have four MTs, namely *MtnA*, *MtnB*, *MtnC* and *MtnD*. Here we characterize a new fifth member of *Drosophila* MT gene family, coding for metallothionein E (*MtnE*). The *MtnE* transcription unit is located head-to-head with the one of *MtnD*. The intervening sequence contains four MREs which bind, with different affinities, to MTF-1. Both the divergently transcribed metallothionein genes are completely dependent on MTF-1, whereby *MtnE* is consistently more strongly transcribed. *MtnE* expression is induced in response to heavy metals, notably copper, mercury and silver, and is upregulated in a genetic background where the other four metallothioneins are missing.

**Keywords:** metallothionein E, *Drosophila*, MTF-1, metal response element, cadmium toxicity
Introduction

Metallothioneins (MTs) are cysteine-rich, low molecular weight proteins that are able to bind a wide range of metals including cadmium, zinc, mercury, copper and silver [1-5]. MTs were first described in 1957 by Vallee and Margoshes as cadmium-binding proteins in the horse renal cortex [6]. MTs play an essential role in heavy metal detoxification and in maintaining the homeostasis of essential trace metals. They are also involved in the protection against free radicals and oxidative stress [7-9]. MTs are ubiquitously found in eukaryotes and also in some prokaryotes [10]. Humans have at least one dozen MT genes, while the mouse has four. Drosophila was thought to have four MTs (MtnA-D) expressed mainly in the digestive tract [11]. S. cerevisiae has two MTs, CUP1 and CRS5 [12, 13].

MTF-1 is a zinc-finger containing transcription factor conserved from insects to humans and is the main regulator of the expression of metallothioneins [reviewed in 14-16]. MTF-1 plays a role not only in heavy metal stress but also in other cell stress conditions, such as oxidative stress and hypoxia [17-20]. MTF-1 was discovered in 1988 and shown to be a protein which requires elevated zinc concentrations for optimal DNA binding [21]. Subsequently the mouse gene was cloned and characterized as a ubiquitously expressed zinc finger transcription factor essential for basal and heavy metal-induced expression of metallothioneins [22, 23]. The cloning of MTF-1 genes of human, fish and Drosophila followed [24-27]. MTF-1 null mutant mouse embryos develop severe liver degeneration and die in utero at approximately day 14 of gestation [28]. Conditional MTF-1 knockout mice in which the gene is
disrupted in the liver and hematopoetic tissues are viable, but highly sensitive to cadmium exposure and display reduced leukocyte counts [29]. In contrast to the lethal phenotype of the mouse MTF-1 null mutant, MTF-1 knockout Drosophila are viable and fertile under standard laboratory conditions, but sensitive to heavy metal load and to copper starvation [30]. Drosophila MTF-1 is essential for the basal and metal-induced expression of the metallothionein genes [30]. Moreover, it is also active under copper starvation where it mediates expression of the intestinal copper importer Ctr1B [31]. Transcriptome analysis also revealed ferritins, the ABC transporter CGI0505, the zinc transporter ZnT35C and glutathione S-transferase genes (GstD2 and GstD5) as target genes of Drosophila MTF-1 [32]. The involvement of the latter two genes is in agreement with findings in mammals, in that both MTF-1/metallothioneins and glutathione play a role in counteracting metal stress [33].

Mammalian MTF-1 has a molecular mass of approximately 75 kDa (mouse and human MTF-1 are 675 and 753 amino acids long, respectively). The N-terminal domain is followed by six Cys2-His2 type zinc fingers. Mammalian MTF-1, besides nuclear localization and nuclear export signals, contains three activation domains: an acidic one, a proline-rich one and a serine/threonine-rich one [34]. A conspicuous cysteine cluster (CQCQCAC) near the C-terminus is also required for transcriptional activity [35] and mediates homodimerization of human MTF-1 [V. G. and W. S., unpublished data]. Recently it was shown that the nuclear localization signal (NLS) of human MTF-1 is a non-conventional one, spanning zinc fingers 1-3 within the DNA-binding domain [36]. Drosophila MTF-1 cDNA encodes a protein of 791 amino acids; it shares 39% amino acid similarity with human MTF-1 and has a particularly striking similarity in the region of all six zinc fingers to its vertebrate homologs [27].
However, whereas human $MTF-1$ shows a strong induction in response to zinc and cadmium, $Drosophila$ $MTF-1$ is best activated by copper and cadmium [27].

As already mentioned, MTF-1 regulates the expression of metallothioneins at the transcriptional level [21-23]. Upon metal stress, MTF-1 binds to short DNA sequences in the enhancer/promoter regions of metallothionein genes and other target genes, termed metal-response elements (MREs). MREs consist of a highly conserved core consensus sequence, (t)TGRCNC (R = A or G, and N = any nucleotide), followed by less conserved GC-rich sequences [37-41]. A synthetic promoter composed of several MRE sequences is sufficient for MTF-1 to drive expression of a gene upon metal induction [42]. Mutations of single nucleotides in MRE sequences can reduce or abolish its function [22].

Here we describe the fifth $Drosophila$ metallothionein gene, annotated as CG42872 in Flybase (www.flybase.org). It encodes a protein that is highly similar to the other $Drosophila$ metallothioneins, especially MtnB, C and D [11, 30], and was named metallothionein E (MtnE) (Figure 1a and b). CG42872 (MtnE) was discovered by targeted cDNA screening of gene predictions as part of the modENCODE transcriptome project [43]. The captured cDNA MIP01063 provided evidence for 5’ and 3’ UTRs and allowed characterization of the upstream regulatory region of the gene (Figure 2a). Similar to other metallothionein genes, MtnE possesses upstream MRE sequence motifs which are apparently shared with MtnD (Figure 2b and c). We cloned the genomic region containing the MtnE and MtnD genes, which are adjacent to each other in a head-to-head orientation. In order to study the expression profiles,
MtnD and MtnE were differentially tagged with GFP and/or mCherry fluorescent tags. MtnE is induced by several heavy metals and its expression, like that of the divergently transcribed MtnD, is completely dependent on MTF-1.

Materials and Methods

Annotation of MT genes in insects

MT-type genes in the different insect genomes were identified by standard BLAST searches (NCBI BLAST and Flybase BLAST) against the sequenced genomes and against protein databases. Sequence alignments were generated with the CLC Sequence Viewer, Version 6.3, with standard parameters.

Fly culture

One liter of fly food was composed of 55 g cornmeal (Maisgriess 54.401.025, Meyerhans Hotz AG), 100 g yeast (Hefe Schweiz AG), 75 g sugar (Dextrose monohydrate), 8 g agar (Insectagar type ZN5) and 15 ml anti-fungal Nipagin (nipagin 33 g/l, nipasol 66 g/l in 96% ethanol). For experiments, food was supplemented with
CuSO$_4$, HgCl$_2$, AgNO$_3$ or ZnSO$_4$ to the concentrations indicated on the figures. Flies were raised at 25°C in 65% humidity.

**Tissue preparation and microscopy**

For the whole-larvae imaging, wandering 3rd instar larvae were placed on glass slides and immobilized by incubating them shortly (~1 min) at 4°C. The pictures were taken using a Leica DMRB microscope and a Zeiss Axiocam color camera with 2.5x magnification.

To harvest guts, wandering 3rd instar larvae were dissected in ice-cold PBS, pH 7.4. Tissues were directly mounted in *Drosophila* Ringer’s solution (3 mM CaCl$_2$, 46 mM NaCl, 182 mM KCl, 10 mM Tris, pH 7.2) and microphotographed. FITC and TRITC filter epifluorescence pictures from larval guts were taken using a Zeiss Axioplan 2 microscope and a Zeiss Axiocam MRm camera with 5x magnification.

**Plasmid construction and transgenic fly strains**

Transgenic fly lines were generated using φC31-mediated transgenesis [44, 45]. In all MT expression experiments the 86Fb (chromosome 3R) landing site was used for plasmid integration. Flies carrying the transgene integration site also expressed the φC31 integrase, which was removed by crossing out after the integration event occurred. To generate *MtnD* and *MtnE* transgenes, a DNA segment containing the two transcription units and flanking sequences corresponding to the segment of *D*. 
*melanogaster* of coordinates 3R: complement (16360941..16363020) was cloned into a vector containing an *attB* site for integration into the specific genomic locus, and a *miniwhite* marker gene. For the overexpression of *Drosophila* MTF-1, we used the constitutively active *Drosophila* tubulin promoter (*Tub*). The VSV-tagged transgene (*Tub-dMTF-1-VSV*) was integrated into the 51D locus on the 2nd chromosome. The null allele for *dMTF-1* is termed *D4*.

For bacterial expression, first the coding region of *MtnE* was obtained using coupled RT-PCR technology (QIAGEN). Then, the PCR product was introduced to pET-24a (Novagen), where *MtnE* is expressed under the T7 bacteriophage promoter. Plasmid sequences and detailed cloning strategies are available upon request.

**Cadmium toxicity assay in *E.coli***

*E. coli* BL21 (DE3) were transformed with the *MtnE*-expression or pET-24a control vector. Liquid cultures (LB-medium + kanamycin) were grown to an OD₆₀₀ between 0.4 - 0.5 and expression of *MtnE* was induced by 0.4 mM IPTG for two hours. Cadmium was added to the indicated concentrations and bacteria were grown at 37 °C. After 21 hours the OD₆₀₀ was determined.

**Electrophoretic mobility shift assay**

*Drosophila* Schneider S2 cells were transiently transfected with the respective constructs and collected 48 hours later. Transfected cells were incubated in medium
containing 400 μM CuSO₄ prior to harvesting. Electrophoretic mobility shift assays (EMSAs) were performed as described by Radtke et al [22] and Zhang et al [27]. Binding reactions were performed by incubating 20 fmoles of [γ-³²P]ATP end-labeled, 24-bp-long double stranded DNA oligonucleotides containing the MRE sequences, with nuclear extracts prepared according to Schreiber et al [46]. The following MRE oligonucleotides (core consensus sequences TCGRCNC indicated in capital letters) were used for EMSA:

MRE 1: 5' - gatttttttgGTGCACAagcagt - 3'
         3' - aaaaaaCACGCGTTtcgtaatt - 5'

MRE 2: 5' - taaagcgattTGCAACGccctga - 3'
         3' - tcgctaaACGTGTGcgggactatt - 5'

MRE 3: 5' - gtcgatcggcGTGCACAaaagcat - 3'
         3' - ctagccgCACGCGTtttcgtaaaa - 5'

MRE 4: 5' - taagaagcctGTGTCGACaagtcgat - 3'
         3' - ctcttcggCACACGTtcagctagcc - 5'

MRE-s: 5' - cgagggagctcTGCAACGgccccgaaagtg - 3'
        3' - tcgaagacctgacACGTGTGcgggctttcacagc - 5'

**Results**

*MtnE* transcription is induced by several heavy metals and dependent on MTF-1

Transgenic larvae carrying a genomic construct encoding a GFP- or mCherry-tagged *MtnE* gene showed stronger fluorescence in the presence of heavy metals, namely,
copper, mercury and silver (Figure 3). An elevated expression of MtnE was also observed when the larvae were raised on food supplemented with 1 mM zinc while iron had at most a marginal effect on MtnE expression (data not shown).

The expression of MtnE's partner gene MtnD was also metal responsive, whereby the MtnE fusion transgene yielded an even stronger fluorescence than MtnD both on NF and Cu-containing food (Figure 4).

Overexpression of MTF-1 (in a heterozygous MTF-1 mutant background) greatly enhanced the expression of MtnE (Figure 5a). In an homozygous MTF-1 mutant background, basal and copper induced expression of MtnE is undetectable (Figure 5b). From these results we conclude that the expression of MtnE, like the other members of Drosophila MT family, is regulated by MTF-1. Knockout of the other four members of the MT family enhances basal as well as induced expression of MtnE, indicating a compensatory upregulation (Figure 5b).

Expression patterns of MtnE and MtnD genes largely overlap

We further investigated the expression of MtnE-GFP and MtnD-mCherry proteins in Drosophila larval tissues. Like that of other Drosophila metallothioneins, MtnE expression was observed in the intestine of larvae on normal food (Figure 6a) and was boosted by copper-containing food (Figure 3, Figure 6b). The expression patterns of MtnD and MtnE mostly overlap in the Drosophila larval gut, but there are some
differences: \textit{MtnE} is more widely expressed than \textit{MtnD} and \textit{MtnB}, the latter of which is strongly expressed in a sub-region of the middle midgut that contains “copper cells” [11]. Copper cells are known to accumulate metal ions following copper or cadmium intoxication [11, 47, 48]. As indicated by blue arrows, copper also boosts the expression of \textit{MtnD} in copper cells, while \textit{MtnE} remains less induced. \textit{MtnD} is also constantly expressed in the so-called iron cell region [49], independent of heavy metal load (Figure 6a, 6b).

According to RNA-seq data obtained with standard food [43], basal expression of \textit{MtnE} essentially follows the pattern of \textit{MtnB}, \textit{C} and \textit{D}, while expression of \textit{MtnA} in the absence of metals is always higher (Table 1).

\textbf{Figure 6}

\textbf{Table 1}

\textbf{Metal response elements shared by of \textit{MtnD} and \textit{MtnE} bind MTF-1 \textit{in vitro}}

As mentioned before, there are four MRE sequence motifs in the DNA segment between the divergently oriented \textit{MtnD} and \textit{MtnE} transcription units that are most likely shared functionally by these two genes. We studied the MTF-1 binding properties of single MREs in EMSA to elucidate their potential for metal-induced expression of \textit{MtnD} and \textit{MtnE}. MRE2, 3 and 4 clearly bind MTF-1, though not as strongly as the synthetic consensus sequence (MRE-s) (Figure 7).

\textbf{Figure 7}

\textbf{Evidence for enhanced cadmium resistance of \textit{MtnE}-expressing bacteria}
To test whether MtnE could act as a metal scavenger in a heterologous system, we produced recombinant *E. coli* expressing *MtnE* from an IPTG-inducible T7 bacteriophage promoter. All clones were adjusted to the same OD, the lac-promoter driving MtnE was induced and bacteria were grown in liquid culture of standard medium containing different concentrations of CdCl$_2$. The next day, OD$_{600}$ was determined for each sample. Indeed upon *MtnE* induction bacteria displayed a relatively higher cadmium resistance than controls (Figure 8).

**Discussion**

The family of *Drosophila* metallothioneins is completed with a new member, *MtnE*. All five MT genes in *Drosophila* are located on the same chromosome and they harbour many structural and regulatory similarities. Here we show that *MtnE*, like the four previously described MTs, is expressed primarily in the intestine and in response to copper and cadmium. The *MtnE* gene shares a cluster of metal response elements with the divergently transcribed *MtnD*, and similar to the other MTs, its expression depends on MTF-1. It was shown before that flies with the quadruple knockout of *MtnA*-D genes are viable and fertile but sensitive to elevated concentrations of copper or cadmium, to a lesser extent to zinc, but not to mercury or silver load or copper depletion. The new member *MtnE* might complement the function of the others by widening the spectrum of metals that can be detoxified. Flies without *MTF-1* are much more sensitive to copper load than flies that lack four of its target genes, metallothioneins A-D. Our present results help to explain this observation, especially
since \textit{MtnE} basal and copper-induced expression levels are elevated in the quadruple metallothionein background. This enhanced expression of the last remaining metallothionein gene is most likely a compensatory upregulation.

So far we have tested the resistance to cadmium of recombinant bacteria expressing \textit{Drosophila MtnE} and found them to be more resistant than control bacteria. Interestingly, \textit{MtnE} expressors apparently grew even better in cadmium-loaded medium than in standard medium. The phenomenon where an organism thrives better under a (usually mild) stress condition than in a stress-free standard condition is known as hormesis. The putative hormesis effect observed for \textit{MtnE}-producing \textit{E. coli} is likely due to the metabolic cost of producing a protein with no function unless the organism is exposed to metal stress, whereupon the protein’s presence becomes advantageous.

\textbf{Acknowledgements}

We are grateful to Kurt Steiner for support in database search and to Dr. George Hausmann for critical reading of the manuscript. S. E. C. would like to thank the members of the BDGP for assistance with cDNA sequencing and members of the modENCODE transcriptome consortium for discussion. This work was supported by the Swiss National Science Foundation and the Kanton Zurich. It was funded in part by a contract from the National Human Genome Research Institute modENCODE Project, contract U01 HG004271, to S. E. C. under Department of Energy contract no. DE-AC02-05CH11231.
References


Table Legends

Table 1.
Expression profiles of metallothionein genes according to RNA-seq data.
Figure Legends

Figure 1. *D. melanogaster* metallothioneins (*MtnA-E*)

a) Sequence alignment of protein-coding cDNA regions of metallothioneins, which are all located on *D. melanogaster* chromosome 3R.

b) Protein sequence alignment of MtnA-E. Note that MtnB, C, D and E sequences are most closely related to each other.

Figure 2. Metal response elements (MREs) of *MtnA-E* and genomic organization of *MtnD* and *MtnE*

a) Scheme of *MtnD* and *MtnE* genomic region, including mRNA untranslated regions (grey) and protein coding sequences (colored). The CG42872 (*MtnE*) model is based on the cDNA MIP01063. There are alternative 3' UTRs for *MtnD* and *MtnE*.

b) Sequence of the *MtnD* and *MtnE* genomic region, including transcription units and the regulatory regions. Four MREs are located between the transcription start sites (TSS). MREs are indicated in red and named MRE 1-4; nucleotides in capital letters are sequences found in cDNA isolates, blue letters indicate the protein-coding region.

c) Schematic view of all five *Drosophila* metallothionein genes located on the R arm of chromosome 3. For each gene the transcription direction is indicated (black arrow). Core MRE nucleotides are depicted in red, with an open arrow indicating the MRE’s orientation. Note that the scale bar of 20 nt is valid only for solid lines between the MREs, but not for the lettered DNA sequences themselves.

Figure 3. *MtnE-GFP* and *MtnE-mCherry* transgenes are expressed mostly in the larval digestive tract
Transgenic larvae were raised on normal food (NF), or food containing copper (Cu), mercury (Hg) or silver (Ag). Pictures with three representative larvae each were taken with 175 ms and 100 ms exposure time for mCherry- and GFP-tagged MTs, respectively. The concentration of metal ions in fly food is indicated on the top of each panel.

**Figure 4. MtnE is more strongly transcribed than MtnD**

In each picture, the larva on the left has the *MtnD* transgene tagged with mCherry or GFP, while the larva on the right carries *MtnE-mCherry* or *MtnE-GFP* transgenes. A longer exposure time (350 ms) was chosen for the upper panel, i.e., for larvae grown on NF, compared to larvae grown on Cu-food (150 ms), to demonstrate better the relative difference between *MtnD* and *MtnE* expression levels.

**Figure 5. Expression of MtnE is dependent of MTF-1**

a) Expression of the *MtnE-GFP* transgene is stronger when MTF-1 is overexpressed (on an *MTF-1* heterozygous background; *D4* denotes the disrupted *MTF-1* locus) in comparison to the control without an *MTF-1* transgene.

b) Expression of *MtnE* is completely dependent on MTF-1. *y w, MTF-1 +/-* or *qMtn* (quadruple knockout of *MtnA-D*) larvae were raised on NF or Cu-food and transcript levels of endogenous *MtnE* was measured by S1-nuclease protection assay. Signals were normalized to *Actin 5c* levels and error bars indicate standard deviations of three experiments.

**Figure 6. Expression pattern of metallothionein reporter constructs**
Larvae were raised on normal food (a) or food containing 100 μM copper (b). Fluorescence intensities are only comparable within parts (a) or (b) and there only within the same (red or green) fluorescent tag. Copper (cupophilic) cells are indicated with blue arrows; orange arrows indicate the region of iron cells/midgut constriction. Three representative gut dissections are shown for each condition.

**Figure 7. MTF-1 binds to the metal response elements of MtnD/MtnE genes**

*Drosophila* S2 cells were transfected with mouse MTF-1 expression plasmids, and 10 μg of nuclear protein extract was used for each bandshift reaction. Lanes 1-4, bandshift (EMSA) with [γ-32P]-labeled oligonucleotides representing MRE 1-4, respectively; lane 5, bandshift with a strong consensus binding site called MRE-s. For oligonucleotide sequences see Materials and Methods.

**Figure 8. Survival of recombinant bacteria expressing Drosophila MtnE**

Separate bacterial colonies were tested for growth in cadmium-containing LB-medium. Control 1 and 2: recombinant clones carrying “empty” plasmid vector (pET-24a); early stop 1 and 2: clones with a premature stop codon after the 12th amino acid, still including 4 out of 10 cysteines and thus expected to produce a mild protective effect; MtnE clones 1-4: full-length MtnE constructs. Bacteria were grown to the same OD_{600} between 0.4 - 0.5, for induction IPTG was added. Two hours later cadmium was added at the indicated concentration and bacteria were grown for 21 hours.
# Tables

## Table 1.

<table>
<thead>
<tr>
<th>Gene</th>
<th>0-2 hr embryos</th>
<th>14-16 hr embryos</th>
<th>L1 larvae</th>
<th>pupae</th>
<th>adult male</th>
<th>adult female</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtnA</td>
<td>4.3</td>
<td>318.9</td>
<td>1939.1</td>
<td>166.2</td>
<td>746.1</td>
<td>151.6</td>
</tr>
<tr>
<td>MtnB</td>
<td>0.1</td>
<td>0.0</td>
<td>235.3</td>
<td>133.7</td>
<td>2.1</td>
<td>17.9</td>
</tr>
<tr>
<td>MtnC</td>
<td>0.0</td>
<td>0.1</td>
<td>13.2</td>
<td>12.9</td>
<td>20.8</td>
<td>10.0</td>
</tr>
<tr>
<td>MtnD</td>
<td>0.1</td>
<td>0.2</td>
<td>94.1</td>
<td>15.5</td>
<td>4.7</td>
<td>10.6</td>
</tr>
<tr>
<td>MtnE</td>
<td>0.1</td>
<td>0.7</td>
<td>239.8</td>
<td>9.0</td>
<td>4.4</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Figures

Figure 1.

(a) 

Mna CDS: ATGCCCTGCC CA - - - TGCGG AAGCGGATGC AATGCGCCA GCGAGCCCA CAAAGGATCC 57
Mnb CDS: ATGTGGTGCA AGGCGTGGGA AACAACGTGC AGTCGCTGCA CGCCAAAGTG CGGGGACAAC 60
Mnc CDS: ATGGTTTCCCA AAGGCTGGCC AGAAACTGCA AAGTCGACGG AGAACACGGC CGGGCAAAAT 60
Mnd CDS: ATGGTTGGAC AAGCGTGGGA AACAACGTGC AGTCGCTGCA CGCCAAAGTG CGGGGACAAC 60
Mne CDS: ATGCCCTTGCA AGGCGTGGGA AACAACGTGC AGTCGCTGCA CGCCAAAGTG CGGGGACAAC 60
Mnf CDS: TGCAACTGCC GAATCGGTCC GGGCGACAAGA AATCGCGCC - - - - TGCGGC 111
Mng CDS: TGCCCTGTCA ACAAGATTGG CCAGTCGTTG TGCAAGATG GGGCGACAAGA CCCAGTGCTG 120
Mnh CDS: TGCCCTGTCA AATCGGACTGG AAGTCGACGG AGAACACGGC CGGGCAAAAT 120
Mni CDS: TGCCCTGTCA AATCGGACTGG AAGTCGACGG AGAACACGGC CGGGCAAAAT 120
Mnj CDS: TGCCCTGTCA AATCGGACTGG AAGTCGACGG AGAACACGGC CGGGCAAAAT 120
Mnk CDS: TGCCCTGTCA AATCGGACTGG AAGTCGACGG AGAACACGGC CGGGCAAAAT 120
Mnl CDS: TGCCCTGTCA AATCGGACTGG AAGTCGACGG AGAACACGGC CGGGCAAAAT 120
Mnm CDS: TCTCTCCAGT - - - TGTA 123
Mnn CDS: ACACACAAAG - - - TAA 132
Mno CDS: AACGACAAAG - - - TAG 152
Mnp CDS: CCCACCAATA ACTAG 135
Mnq CDS: CAGCGCAAG - - - TGTA 126

(b) 

Mna: Midget - CGSGCKCQSAQATKGSNCNSQCDK - - - GGDKKSAACGCSE 40
Mnb: Midget - CNGCGTNCQCSAQQCGDCACNKDCQTYCKNGPKKDQCCSNK - 43
Mnc: Midget - CKCGTNCQCSATCKCNACNQDKCKCYCKNGPKKDQCCSNK - 43
Mnd: Midget - CKCGTNCQCSATCKCNACNQDKCKCYCKNGPKKDQCCSNK - 43
Mne: Midget - CKCGTNCQCSATCKCNACNQDKCKCYCKNGPKKDQCCSNK - 43

Consensus 100%

<table>
<thead>
<tr>
<th>Midget</th>
<th>Midget</th>
<th>Midget</th>
<th>Midget</th>
<th>Midget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
</tr>
<tr>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
</tr>
<tr>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
</tr>
</tbody>
</table>

Conservation

<table>
<thead>
<tr>
<th>Midget</th>
<th>Midget</th>
<th>Midget</th>
<th>Midget</th>
<th>Midget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
</tr>
<tr>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
</tr>
<tr>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
<td>Midget</td>
</tr>
</tbody>
</table>
Figure 2.

a) 

b) 

acttgttaacttgccattgcagcagctggtagtaaaggtttaaattgtaaatgtcagaattacaagttggctgtttttctgtctttcatcttatgttttGAAAGATCTAAAGT
GCAACATTTCGGAATATTTATTAATGGTAAAATTAGAGATTAGCAGACATTTAAATTAGGTGGTTTTATTCCTAGCGTCGGAGCTGTTTGT
ACACACTATTAGAGACTTTTATACCTATTAACACAAAAGCTAGAGGCGACACCATCTTGCGCTGGCAGACACTTGCGAGCTCAGTGCGGTAGCGT
atattttttattattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
Figure 3.

Figure 4.
Figure 5.

a)

b)
Figure 6.

a)  

b)
Figure 7.

![Image of a gel electrophoresis with lanes labeled 1 to 5 and a marker labeled MTF-1.]

Figure 8.

![Graph showing the OD600 values against CdCl2 concentration with different lines for control 1 to 3 and MnE clone 1 to 4.]

**Legend:**
- control 1
- control 2
- early stop 1
- early stop 2
- MnE clone 1
- MnE clone 2
- MnE clone 3
- MnE clone 4