Header

UZH-Logo

Maintenance Infos

Reference genes identified in SH-SY5Y cells using custom-made gene arrays with validation by quantitative polymerase chain reaction


Hoerndli, F J; Toigo, M; Schild, A; Götz, J; Day, P J (2004). Reference genes identified in SH-SY5Y cells using custom-made gene arrays with validation by quantitative polymerase chain reaction. Analytical Biochemistry, 335(1):30-41.

Abstract

Transcriptomic methods are widely used as an initial approach to gain a mechanistic insight into physiological and pathological processes. Because differences in gene regulation to be assessed by RNA screening methods (e.g., SAGE, Affymetrix GeneChips) can be very subtle, these techniques require stable reference genes for accurate normalization. It is widely known that housekeeping genes, which are routinely used for normalization, can vary significantly depending on the tissue, and experimental test. In this study, we aimed at identifying stable reference genes for a fibrillar Abeta(42) peptide-treated, human tau-expressing SH-SY5Y neuroblastoma cell line derived to model aspects of Alzheimer's disease in tissue culture. We selected genes exhibiting potential normalization characteristics from public databases to create a custom-made microarray allowing the identification of reference genes for low, intermediate, and abundant mRNAs. A subset of these candidates was subjected to quantitative real-time polymerase chain reaction and was analyzed with geNorm software. By doing so, we were able to identify GAPD, M-RIP, and POLR2F as stable and usable reference genes irrespective of differentiation status and Abeta(42) treatment.

Abstract

Transcriptomic methods are widely used as an initial approach to gain a mechanistic insight into physiological and pathological processes. Because differences in gene regulation to be assessed by RNA screening methods (e.g., SAGE, Affymetrix GeneChips) can be very subtle, these techniques require stable reference genes for accurate normalization. It is widely known that housekeeping genes, which are routinely used for normalization, can vary significantly depending on the tissue, and experimental test. In this study, we aimed at identifying stable reference genes for a fibrillar Abeta(42) peptide-treated, human tau-expressing SH-SY5Y neuroblastoma cell line derived to model aspects of Alzheimer's disease in tissue culture. We selected genes exhibiting potential normalization characteristics from public databases to create a custom-made microarray allowing the identification of reference genes for low, intermediate, and abundant mRNAs. A subset of these candidates was subjected to quantitative real-time polymerase chain reaction and was analyzed with geNorm software. By doing so, we were able to identify GAPD, M-RIP, and POLR2F as stable and usable reference genes irrespective of differentiation status and Abeta(42) treatment.

Statistics

Citations

50 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2004
Deposited On:02 Sep 2011 10:44
Last Modified:07 Dec 2017 08:53
Publisher:Elsevier
ISSN:0003-2697
Publisher DOI:https://doi.org/10.1016/j.ab.2004.08.028
PubMed ID:15519568

Download

Full text not available from this repository.
View at publisher