Header

UZH-Logo

Maintenance Infos

Posttranslational modifications of tau - role in human tauopathies and modeling in transgenic animals


Chen, F; David, D; Ferrari, A; Götz, J (2004). Posttranslational modifications of tau - role in human tauopathies and modeling in transgenic animals. Current Drug Targets, 5(6):503-515.

Abstract

Alzheimer's disease (AD) is characterized histopathologically by beta-amyloid-containing plaques, neurofibrillary tangles (NFT), reduced synaptic density, and neuronal loss in selected brain areas. Plaques consist of aggregates of a small peptide termed Abeta which is derived by proteolysis of the larger amyloid precursor protein APP, whereas NFT are composed of hyperphosphorylated forms of the microtubule-associated protein tau. Tau pathology in the presence of scant or no beta-amyloid plaques characterizes additional neurodegenerative disorders collectively called tauopathies. In the course of plaque and NFT formation, the major proteinaceous components of these lesions undergo post-translational modifications. In the case of tau, these include phosphorylation of mainly serine and threonine, but also tyrosine residues. In addition, tau is subject to ubiquitination, nitration, truncation, prolyl isomerization, association with heparan sulfate proteoglycan, glycosylation, glycation and modification by advanced glycation end-products (AGEs). This review aims to provide insight into the complexity of tau modifications in human tauopathies such as AD and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Selected aspects of the post-translational modification of tau have been reproduced in transgenic animal models. Most of this work has been done in mice, but insight has also been gained from studies in the sea lamprey, the nematode C. elegans and Drosophila. Attempts have been made to link specific post-translational modifications with tau aggregation and nerve cell dysfunction.

Abstract

Alzheimer's disease (AD) is characterized histopathologically by beta-amyloid-containing plaques, neurofibrillary tangles (NFT), reduced synaptic density, and neuronal loss in selected brain areas. Plaques consist of aggregates of a small peptide termed Abeta which is derived by proteolysis of the larger amyloid precursor protein APP, whereas NFT are composed of hyperphosphorylated forms of the microtubule-associated protein tau. Tau pathology in the presence of scant or no beta-amyloid plaques characterizes additional neurodegenerative disorders collectively called tauopathies. In the course of plaque and NFT formation, the major proteinaceous components of these lesions undergo post-translational modifications. In the case of tau, these include phosphorylation of mainly serine and threonine, but also tyrosine residues. In addition, tau is subject to ubiquitination, nitration, truncation, prolyl isomerization, association with heparan sulfate proteoglycan, glycosylation, glycation and modification by advanced glycation end-products (AGEs). This review aims to provide insight into the complexity of tau modifications in human tauopathies such as AD and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Selected aspects of the post-translational modification of tau have been reproduced in transgenic animal models. Most of this work has been done in mice, but insight has also been gained from studies in the sea lamprey, the nematode C. elegans and Drosophila. Attempts have been made to link specific post-translational modifications with tau aggregation and nerve cell dysfunction.

Statistics

Citations

70 citations in Web of Science®
71 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2004
Deposited On:02 Sep 2011 10:52
Last Modified:16 Aug 2016 10:14
Publisher:Bentham Science
ISSN:1389-4501
Publisher DOI:https://doi.org/10.2174/1389450043345236
PubMed ID:15270197

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations