Header

UZH-Logo

Maintenance Infos

Modulation of Alzheimer's pathology by cerebro-ventricular grafting of hybridoma cells expressing antibodies against Abeta in vivo


Gaugler, M N M; Tracy, J; Kuhnle, K; Crameri, A; Nitsch, R M; Mohajeri, M H (2005). Modulation of Alzheimer's pathology by cerebro-ventricular grafting of hybridoma cells expressing antibodies against Abeta in vivo. FEBS Letters, 579(3):753-756.

Abstract

Accumulation in brain of the beta-amyloid peptide (Abeta) is considered as crucial pathogenic event causing Alzheimer's disease (AD). Anti-Abeta immune therapy is a powerful means for Abeta clearance from the brain. We recently showed that intravenous injections of anti-Abeta antibodies led to reduction, elevation or no change in brain Abeta42 concentrations of an AD mouse model. We report here, in a second passive immunization protocol, a different bioactivity of same antibodies to alter brain Abeta42 concentrations. Comparing the bioactivity of anti-Abeta antibodies in these two passive immunization paradigms underscores the potential of immune therapy for AD treatment and suggests that both the epitope recognized by the antibody and the mode of antibody administration are crucial for its biological activity.

Abstract

Accumulation in brain of the beta-amyloid peptide (Abeta) is considered as crucial pathogenic event causing Alzheimer's disease (AD). Anti-Abeta immune therapy is a powerful means for Abeta clearance from the brain. We recently showed that intravenous injections of anti-Abeta antibodies led to reduction, elevation or no change in brain Abeta42 concentrations of an AD mouse model. We report here, in a second passive immunization protocol, a different bioactivity of same antibodies to alter brain Abeta42 concentrations. Comparing the bioactivity of anti-Abeta antibodies in these two passive immunization paradigms underscores the potential of immune therapy for AD treatment and suggests that both the epitope recognized by the antibody and the mode of antibody administration are crucial for its biological activity.

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2005
Deposited On:02 Sep 2011 14:16
Last Modified:16 Aug 2016 10:14
Publisher:Elsevier
ISSN:0014-5793
Publisher DOI:https://doi.org/10.1016/j.febslet.2005.01.002
PubMed ID:15670841

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations