Header

UZH-Logo

Maintenance Infos

UvrD2 is essential in mycobacterium tuberculosis, but its helicase activity is not required


Williams, A; Güthlein, C; Beresford, N; Böttger, E C; Springer, B; Davis, E O (2011). UvrD2 is essential in mycobacterium tuberculosis, but its helicase activity is not required. Journal of Bacteriology, 193(17):4487-4494.

Abstract

UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosishas two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.

Abstract

UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosishas two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.

Statistics

Citations

8 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:14 Sep 2011 09:35
Last Modified:05 Apr 2016 15:00
Publisher:American Society for Microbiology
ISSN:0021-9193
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JB.00302-11
PubMed ID:21725019

Download

Full text not available from this repository.
View at publisher