Header

UZH-Logo

Maintenance Infos

Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau


Tackenberg, C; Brandt, R (2009). Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau. Journal of Neuroscience, 29(46):14439-14450.

Abstract

Alzheimer's disease is characterized by synaptic alterations and neurodegeneration. Histopathological hallmarks represent amyloid plaques composed of amyloid-beta (Abeta) and neurofibrillary tangles containing hyperphosphorylated tau. To determine whether synaptic changes and neurodegeneration share common pathways, we established an ex vivo model using organotypic hippocampal slice cultures from amyloid precursor protein transgenic mice combined with virus-mediated expression of EGFP-tagged tau constructs. Confocal high-resolution imaging, algorithm-based evaluation of spines, and live imaging were used to determine spine changes and neurodegeneration. We report that Abeta but not tau induces spine loss and shifts spine shape from mushroom to stubby through a mechanism involving NMDA receptor (NMDAR), calcineurin, and GSK-3beta activation. In contrast, Abeta alone does not cause neurodegeneration but induces toxicity through phosphorylation of wild-type (wt) tau in an NMDAR-dependent pathway. We show that GSK-3beta levels are elevated in APP transgenic cultures and that inhibiting GSK-3beta activity or use of phosphorylation-blocking tau mutations prevented Abeta-induced toxicity of tau. FTDP-17 tau mutants are differentially affected by Abeta. While R406W tau shows increased toxicity in the presence of Abeta, no change is observed with P301L tau. While blocking NMDAR activity abolishes toxicity of both wt and R406W tau, the inhibition of GSK-3beta only protects against toxicity of wt tau but not of R406W tau induced by Abeta. Tau aggregation does not correlate with toxicity. We propose that Abeta-induced spine pathology and tau-dependent neurodegeneration are mediated by divergent pathways downstream of NMDAR activation and suggest that Abeta affects wt and R406W tau toxicity by different pathways downstream of NMDAR activity.

Abstract

Alzheimer's disease is characterized by synaptic alterations and neurodegeneration. Histopathological hallmarks represent amyloid plaques composed of amyloid-beta (Abeta) and neurofibrillary tangles containing hyperphosphorylated tau. To determine whether synaptic changes and neurodegeneration share common pathways, we established an ex vivo model using organotypic hippocampal slice cultures from amyloid precursor protein transgenic mice combined with virus-mediated expression of EGFP-tagged tau constructs. Confocal high-resolution imaging, algorithm-based evaluation of spines, and live imaging were used to determine spine changes and neurodegeneration. We report that Abeta but not tau induces spine loss and shifts spine shape from mushroom to stubby through a mechanism involving NMDA receptor (NMDAR), calcineurin, and GSK-3beta activation. In contrast, Abeta alone does not cause neurodegeneration but induces toxicity through phosphorylation of wild-type (wt) tau in an NMDAR-dependent pathway. We show that GSK-3beta levels are elevated in APP transgenic cultures and that inhibiting GSK-3beta activity or use of phosphorylation-blocking tau mutations prevented Abeta-induced toxicity of tau. FTDP-17 tau mutants are differentially affected by Abeta. While R406W tau shows increased toxicity in the presence of Abeta, no change is observed with P301L tau. While blocking NMDAR activity abolishes toxicity of both wt and R406W tau, the inhibition of GSK-3beta only protects against toxicity of wt tau but not of R406W tau induced by Abeta. Tau aggregation does not correlate with toxicity. We propose that Abeta-induced spine pathology and tau-dependent neurodegeneration are mediated by divergent pathways downstream of NMDAR activation and suggest that Abeta affects wt and R406W tau toxicity by different pathways downstream of NMDAR activity.

Statistics

Citations

76 citations in Web of Science®
78 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

220 downloads since deposited on 13 Sep 2011
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:13 Sep 2011 08:24
Last Modified:16 Aug 2016 10:13
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.3590-09.2009
PubMed ID:19923278

Download

Download PDF  'Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher