Header

UZH-Logo

Maintenance Infos

Neural correlates of value, risk, and risk aversion contributing to decision making under risk


Christopoulos, G I (2009). Neural correlates of value, risk, and risk aversion contributing to decision making under risk. Journal of Neuroscience, 29(40):12574-12583.

Abstract

Decision making under risk is central to human behavior. Economic decision theory suggests that value, risk, and risk aversion influence choice behavior. Although previous studies identified neural correlates of decision parameters, the contribution of these correlates to actual choices is unknown. In two different experiments, participants chose between risky and safe options. We identified discrete blood oxygen level-dependent (BOLD) correlates of value and risk in the ventral striatum and anterior cingulate, respectively. Notably, increasing inferior frontal gyrus activity to low risk and safe options correlated with higher risk aversion. Importantly, the combination of these BOLD responses effectively decoded the behavioral choice. Striatal value and cingulate risk responses increased the probability of a risky choice, whereas inferior frontal gyrus responses showed the inverse relationship. These findings suggest that the BOLD correlates of decision factors are appropriate for an ideal observer to detect behavioral choices. More generally, these biological data contribute to the validity of the theoretical decision parameters for actual decisions under risk.

Abstract

Decision making under risk is central to human behavior. Economic decision theory suggests that value, risk, and risk aversion influence choice behavior. Although previous studies identified neural correlates of decision parameters, the contribution of these correlates to actual choices is unknown. In two different experiments, participants chose between risky and safe options. We identified discrete blood oxygen level-dependent (BOLD) correlates of value and risk in the ventral striatum and anterior cingulate, respectively. Notably, increasing inferior frontal gyrus activity to low risk and safe options correlated with higher risk aversion. Importantly, the combination of these BOLD responses effectively decoded the behavioral choice. Striatal value and cingulate risk responses increased the probability of a risky choice, whereas inferior frontal gyrus responses showed the inverse relationship. These findings suggest that the BOLD correlates of decision factors are appropriate for an ideal observer to detect behavioral choices. More generally, these biological data contribute to the validity of the theoretical decision parameters for actual decisions under risk.

Statistics

Citations

166 citations in Web of Science®
173 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

106 downloads since deposited on 27 Oct 2011
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Language:English
Date:2009
Deposited On:27 Oct 2011 12:59
Last Modified:21 Nov 2017 15:29
Publisher:Society for Neuroscience
ISSN:0270-6474
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.2614-09.2009
PubMed ID:19812332

Download

Download PDF  'Neural correlates of value, risk, and risk aversion contributing to decision making under risk'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher