Header

UZH-Logo

Maintenance Infos

Hierarchical processing of auditory objects in humans


Kumar, S; Stephan, K E; Warren, J D; Friston, K J; Griffiths, T D (2007). Hierarchical processing of auditory objects in humans. PLoS Computational Biology, 3(6):e100.

Abstract

This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

Abstract

This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

Statistics

Citations

57 citations in Web of Science®
63 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

22 downloads since deposited on 31 Oct 2011
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Language:English
Date:2007
Deposited On:31 Oct 2011 10:27
Last Modified:07 Dec 2017 09:24
Publisher:Public Library of Science (PLoS)
ISSN:1553-734X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pcbi.0030100
PubMed ID:17542641

Download

Download PDF  'Hierarchical processing of auditory objects in humans'.
Preview
Content: Published Version
Filetype: PDF
Size: 441kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)