Header

UZH-Logo

Maintenance Infos

Extra-classical receptive field effects measured in striate cortex with fMRI


Harrison, L M; Stephan, K E; Rees, G; Friston, K J (2007). Extra-classical receptive field effects measured in striate cortex with fMRI. NeuroImage, 34(3):1199-1208.

Abstract

The aim of this study was to measure the contextual influence of globally coherent motion on visual cortical responses using functional magnetic resonance imaging. Our motivation was to test a prediction from representational theories of perception (i.e. predictive coding) that primary visual responses should be suppressed by top-down influences during coherent motion. We used a sparse stimulus array such that each element could not fall within the same classical receptive field of primary visual cortex neurons (i.e. precluding lateral interactions within V1). This enabled us to attribute differences, in striate cortex responses, to extra-classical receptive field effects mediated by backward connections. In accord with theoretical predictions we were able to demonstrate suppression of striate cortex activations to coherent relative to incoherent motion. These results suggest that suppression of primary visual cortex responses to coherent motion reflect extra-classical effects mediated by backward connections.

Abstract

The aim of this study was to measure the contextual influence of globally coherent motion on visual cortical responses using functional magnetic resonance imaging. Our motivation was to test a prediction from representational theories of perception (i.e. predictive coding) that primary visual responses should be suppressed by top-down influences during coherent motion. We used a sparse stimulus array such that each element could not fall within the same classical receptive field of primary visual cortex neurons (i.e. precluding lateral interactions within V1). This enabled us to attribute differences, in striate cortex responses, to extra-classical receptive field effects mediated by backward connections. In accord with theoretical predictions we were able to demonstrate suppression of striate cortex activations to coherent relative to incoherent motion. These results suggest that suppression of primary visual cortex responses to coherent motion reflect extra-classical effects mediated by backward connections.

Statistics

Citations

54 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 31 Oct 2011
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Language:English
Date:2007
Deposited On:31 Oct 2011 11:31
Last Modified:07 Dec 2017 09:24
Publisher:Elsevier
ISSN:1053-8119
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2006.10.017
PubMed ID:17169579

Download

Download PDF  'Extra-classical receptive field effects measured in striate cortex with fMRI'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 720kB
View at publisher