Header

UZH-Logo

Maintenance Infos

Dynamic cyclovergence during vertical translation in humans


Olasagasti, I; Bockisch, C J; Zee, D S; Straumann, D (2011). Dynamic cyclovergence during vertical translation in humans. Journal of Neuroscience, 31(27):9991-9997.

Abstract

When humans are accelerated along the body vertical, the right and left eyes show oppositely directed torsional modulation (cyclovergence). The origin of this paradoxical response is unknown. We studied cyclovergence during linear sinusoidal vertical motion in healthy humans. A small head-fixed visual target minimized horizontal and vertical motion of the eyes and therefore isolated the torsional component. For stimuli between 1 and 2 Hz (near the natural range of head motion), the phase of cyclovergence with respect to inertial acceleration was 8.7 ± 2.4° (mean ± 95% CI) and the sensitivity (in degrees per second per g) showed a small but statistically significant increase with frequency. These characteristics contrast with those of cycloversion (conjugate torsion) during horizontal (interaural) inertial stimuli at similar frequencies. From these and previous results, we propose that cyclovergence during vertical translation has two sources, one, like cycloversion, from the low-frequency component of linear acceleration, and another, which we term dynamic cyclovergence, with high-pass characteristics. Furthermore, we suggest that this cyclovergence response in humans is a vestige of the response of lateral-eyed animals to vertical linear acceleration of the head.

Abstract

When humans are accelerated along the body vertical, the right and left eyes show oppositely directed torsional modulation (cyclovergence). The origin of this paradoxical response is unknown. We studied cyclovergence during linear sinusoidal vertical motion in healthy humans. A small head-fixed visual target minimized horizontal and vertical motion of the eyes and therefore isolated the torsional component. For stimuli between 1 and 2 Hz (near the natural range of head motion), the phase of cyclovergence with respect to inertial acceleration was 8.7 ± 2.4° (mean ± 95% CI) and the sensitivity (in degrees per second per g) showed a small but statistically significant increase with frequency. These characteristics contrast with those of cycloversion (conjugate torsion) during horizontal (interaural) inertial stimuli at similar frequencies. From these and previous results, we propose that cyclovergence during vertical translation has two sources, one, like cycloversion, from the low-frequency component of linear acceleration, and another, which we term dynamic cyclovergence, with high-pass characteristics. Furthermore, we suggest that this cyclovergence response in humans is a vestige of the response of lateral-eyed animals to vertical linear acceleration of the head.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

130 downloads since deposited on 07 Jan 2012
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:07 Jan 2012 20:14
Last Modified:05 Apr 2016 15:05
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.0064-11.2011
PubMed ID:21734290

Download

Download PDF  'Dynamic cyclovergence during vertical translation in humans'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 132kB
View at publisher
Download PDF  'Dynamic cyclovergence during vertical translation in humans'.
Preview
Content: Published Version
Filetype: PDF
Size: 434kB