Impact of obesity on stroke outcome after intravenous thrombolysis

Sarikaya, H; Elmas, F; Arnold, M; Georgiadis, D; Baumgartner, R W

Abstract: BACKGROUND AND PURPOSE: Obesity is an established risk factor for stroke and has reached epidemic proportions. However, its impact on intravenous thrombolysis applied for acute ischemic stroke is not well known. We aimed to compare the clinical outcome and safety after intravenous thrombolysis in obese (body mass index 30 kg/m²) and nonobese (body mass index <30 kg/m²) patients with ischemic stroke. METHODS: Data of 304 consecutive patients with stroke (251 nonobese and 53 obese) treated with intravenous thrombolysis were studied. We assessed the rate of favorable outcome (modified Rankin Scale score 0 or 1), mortality, and symptomatic intracranial hemorrhage in the 2 groups. RESULTS: Obese patients presented more often with diabetes mellitus (30.2% versus 12.4%, P<0.01) and arterial hypertension (77.4% versus 61.4%, P=0.03) as compared with their nonobese counterparts. At 3 months, the rate of favorable outcome was lower in obese compared with nonobese patients (50.9% versus 68.1%, P=0.02). More obese than nonobese patients died (13.2% versus 4.0%, P=0.01), whereas the rate of symptomatic intracranial hemorrhage was similar in the 2 groups (1.9% versus 1.6%, P=1.0). After multivariable adjustment, obesity still remained an independent predictor of unfavorable outcome (P=0.04) and mortality (P=0.04). CONCLUSIONS: Our data indicate that obesity is an independent predictor of unfavorable clinical outcome and mortality in acute ischemic stroke treated with intravenous thrombolysis.

DOI: https://doi.org/10.1161/STROKEAHA.110.599613

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-51011
Accepted Version

Originally published at:
DOI: https://doi.org/10.1161/STROKEAHA.110.599613
Impact of Obesity on Stroke Outcome

After Intravenous Thrombolysis

Authors: Hakan Sarikaya, MD; Firat Elmas; Marcel Arnold, MD; Dimitrios Georgiadis, MD; Ralf W. Baumgartner, MD

1Department of Neurology, University Hospital of Zurich, Switzerland
2Department of Neurology, University Hospital of Bern, Switzerland

Search terms: Ischemic stroke, Obesity, Thrombolysis

Character count for the title: 49
Word count for the abstract: 211
Word count for the manuscript: 1093
Number of references: 15
Number of Tables: 1
Number of Figures: 1

Disclosure: The authors report no disclosures

Address for correspondence: Hakan Sarikaya, MD
Neurology Department
University Hospital of Zurich
8091 Zurich, Switzerland
Tel. +41 44 255 11 11
Fax +41 44 255 88 64
E-mail: hakan.sarikaya@usz.ch
Background and Purpose

Obesity is an established risk factor for stroke and has reached epidemic proportions. However, its impact on intravenous thrombolysis (IVT) applied for acute ischemic stroke is not well known. We aimed to compare the clinical outcome and safety after IVT in obese (body mass index (BMI) ≥30 kg/m²) and non-obese (BMI <30 kg/m²) patients with ischemic stroke.

Methods

Data of 304 consecutive stroke patients (251 non-obese and 53 obese) treated with IVT were studied. We assessed the rate of favorable outcome (modified Rankin Scale score 0 or 1), mortality and symptomatic intracranial hemorrhage (sICH) in the two groups.

Results

Obese patients presented more often with diabetes mellitus (30.2% vs. 12.4%, p<0.01) and arterial hypertension (77.4% vs. 61.4%, p=0.03) as compared with their non-obese counterparts. At three months, the rate of favorable outcome was lower in obese compared to non-obese patients (50.9% vs. 68.1%, p=0.02). More obese than non-obese patients died (13.2% vs. 4.0%, p=0.01), while the rate of sICH was similar in the two groups (1.9% vs. 1.6%, p=1.0). After multivariable adjustment, obesity still remained an independent predictor of unfavorable outcome (p=0.04) and mortality (p=0.04).

Conclusion

Our data indicate that obesity is an independent predictor of unfavorable clinical outcome and mortality in acute ischemic stroke treated with IVT.
Obesity is an established vascular risk factor with increasing prevalence and huge impact on public health worldwide.1 It has been shown to be an independent predictor for ischemic stroke with an 4\% risk increase for each unit augmentation in body mass index (BMI).2 Thus, obese patients will constitute an increasing subgroup of candidates for intravenous thrombolysis (IVT). However, little is known about the impact of obesity on outcome in stroke patients treated with IVT. Therefore, we aimed to assess the clinical outcome and safety in obese and non-obese patients undergoing IVT for acute ischemic stroke.

METHODS
We studied prospectively collected data of consecutive patients with acute ischemic stroke who underwent IVT with alteplase, but no other or additional thrombolytic treatment at the University Hospital of Zurich between January 1, 2005, and November 30, 2008. Routine baseline investigations and definition of variables have been reported in a previous study.3 Body mass index was calculated as weight in kilograms divided by height squared in meters. Body weight and height were either obtained from the patient or the accompanying relatives at admission, or measured by nurse during hospital stay. Patients were classified as obese when BMI was 30 kg/m2 or more.

Intravenous thrombolysis was performed according to current guidelines except the use of extended time window up to 4.5 hours, the latter based on a pooled analysis presented at the 27th International Stroke Conference in February 2002 (San Antonio, Texas).4,5 Patients and relatives were informed about the off-label use of alteplase beyond the 3-hour time window and informed consent was obtained prior to IVT. All patients were monitored in our stroke unit for at least 24 hours after thrombolysis. The study is approved by the local ethics committee.
Outcome measurements
Symptomatic intracranial hemorrhage (sICH) was defined as neurological deterioration causing a ≥4 points worsening on the NIHSS causally related to ICH detected by CCT within 36 hours after initiation of IVT. Asymptomatic intracranial hemorrhage was defined as any ICH without neurological deterioration. Clinical outcomes were mortality and the modified Rankin Scale (mRS) score at 3 months, the latter dichotomized into favorable (0-1) and unfavorable (2-6).

Statistical analysis
Statistical analysis was performed with SPSS 10.0 for MacIntosh statistical software (SPSS Inc). Statistical significance for intergroup differences was assessed by the χ^2 or Fisher’s exact test (the latter if some expected counts in the two-by-two table were too low) for categorical variables and the Mann-Whitney U test for continuous variables. Backward stepwise logistic regression analyses were performed to assess an independent association between obesity and the predefined endpoints. The variables included were age, gender, hypertension, diabetes mellitus, smoking status, baseline NIHSS score, time from stroke onset to treatment and pre-stroke treatment with antiplatelet agents. Significance was declared at 2-sided p<0.05 level.
RESULTS

A total of 304 patients were eligible for this study; 53 (17%) of them were obese (mean BMI 33.2 kg/m²) and 251 (83%) non-obese (mean BMI 25.1 kg/m²). Obese patients presented more often with arterial hypertension and diabetes mellitus as compared with their non-obese counterparts, whereas age, stroke severity, time to treatment and other baseline characteristics were similar in both cohorts (Table). At three months, 27 of 53 (50.9%) obese and 171 of 251 (68.1%) non-obese patients experienced a favorable outcome (p=0.02), while seven of 53 obese (13.2%) and 10 of 251 (4.0%) non-obese patients died (p=0.01) (Figure). Symptomatic ICH occurred in one of 53 (1.9%) obese and 4 of 251 (1.6%) non-obese patients (p=1.0), while asymptomatic ICH was observed in 7 of 53 (13.2%) obese and 35 of 251 (13.9%) non-obese patients (p=0.62).

Logistic regression analyses identified a higher baseline NIHSS score (p<0.01) and obesity (p=0.04) as independent predictors of unfavorable clinical outcome, whereas baseline NIHSS score (p<0.01), age (p=0.01), time to treatment (p=0.02) and obesity (p=0.04) predicted mortality independently.
DISCUSSION

Our study suggests an adverse influence of obesity on IVT in ischemic stroke. Obese patients had less often a favorable outcome and were at higher mortality risk as compared with their non-obese counterparts. Logistic regression analyses suggest that the poor outcome in the obese cohort is independent from the associated vascular risk factors such as hypertension or diabetes mellitus.

Several reasons might explain the unfavorable clinical outcome in obese stroke patients treated with IVT. First, obesity has been shown to be associated with a proinflammatory and prothrombotic state, thus potentially hampering the clot dissolving effect of alteplase. Plasminogen activator inhibitor-1 is a main inhibitor of fibrinolysis and seems to be consistently overexpressed in adipose tissue.

Furthermore, obesity is closely associated with the metabolic syndrome (MetS), and the rate of MCA recanalization is lower in patients as compared to those without MetS. Second, body weight was above 100 kg in 13 (25%) of obese patients; thus, the dose of alteplase might have been insufficient in these patients as the maximum dose is limited at 90 mg. In line with this, increased body weight in patients with acute myocardial infarction was associated with lower probability of coronary artery recanalization after IVT. As pretreatment status of cerebral arteries and recanalization were unknown in our study, however, we have no means to support this hypothesis. Third, obese patients might be prone to more in-hospital complications such as venous thromboembolism. In our study, obesity was associated with a higher mortality. This finding is in line with a previous study that reported a greater risk of all-cause and cardiovascular death among stroke patients with higher BMI. The sICH risk in the obese cohort was similar compared to the non-obese patients. However, the low number of sICH precludes any definite conclusions on hemorrhage risk of IVT in obese stroke patients.
This study has some limitations. The cohort size of obese patients is small and does not allow to generalize our findings. Thus, our observation should be interpreted with caution and needs to be confirmed by further studies. Metabolic syndrome and hyperglycemia, both associated with obesity and higher resistance to IVT, might have contributed to the effect of obesity. Another limitation of this study is that body weight and height were self-reported by patients or caregivers in part, although the validity of self reported measurements of body weight has been shown. Finally, the outcomes were measured in clinical routine and thus were not necessarily obtained by blinded assessors.

In conclusion, our study suggests that obesity is an independent predictor of unfavorable clinical outcome and mortality in stroke patients treated with IVT. This observation might have a practical consequence as obesity may indicate a subgroup of patients with poor response to IVT, who may benefit from more aggressive treatment and monitoring strategies.
Table. Baseline Characteristics in Patients with BMI ≥ 30 kg/m² vs. BMI < 30 kg/m²

<table>
<thead>
<tr>
<th></th>
<th>BMI ≥ 30 kg/m² (n=53)</th>
<th>BMI < 30 kg/m² (n=251)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age ± SD [years]</td>
<td>63.6 ± 13.6</td>
<td>63.6 ± 14.7</td>
<td>0.99</td>
</tr>
<tr>
<td>Male sex</td>
<td>62.3 (33)</td>
<td>66.1 (166)</td>
<td>0.63</td>
</tr>
<tr>
<td>Hypertension</td>
<td>77.4 (41)</td>
<td>61.4 (154)</td>
<td>0.03</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>30.2 (16)</td>
<td>12.4 (31)</td>
<td><0.01</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>15.1 (8)</td>
<td>17.1 (43)</td>
<td>0.84</td>
</tr>
<tr>
<td>Current smoking</td>
<td>28.3 (15)</td>
<td>26.7 (67)</td>
<td>0.87</td>
</tr>
<tr>
<td>Total Cholesterol ± SD [mmol/L]</td>
<td>5.2 ± 1.2</td>
<td>5.1 ± 1.2</td>
<td>0.52</td>
</tr>
<tr>
<td>Prestroke antiplatelet treatment</td>
<td>35.8 (19)</td>
<td>32.3 (81)</td>
<td>0.63</td>
</tr>
<tr>
<td>Admission systolic blood pressure ± SD [mmHg]</td>
<td>154.6 ± 23.1</td>
<td>154.1 ± 26.4</td>
<td>0.90</td>
</tr>
<tr>
<td>Admission diastolic blood pressure ± SD [mmHg]</td>
<td>87.8 ± 13.9</td>
<td>88.9 ± 14.2</td>
<td>0.66</td>
</tr>
<tr>
<td>Admission blood glucose ± SD [mmol/L]</td>
<td>7.2 ± 2.6</td>
<td>6.6 ± 2.3</td>
<td>0.12</td>
</tr>
<tr>
<td>Baseline NIHSS score ± SD</td>
<td>10.7 ± 5.9</td>
<td>10.0 ± 5.5</td>
<td>0.37</td>
</tr>
<tr>
<td>Stroke onset to treatment time ± SD [min]</td>
<td>161.3 ± 38.6</td>
<td>158.4 ± 43.0</td>
<td>0.65</td>
</tr>
<tr>
<td>Stroke subtype (TOAST-classification)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioembolism</td>
<td>49.1 (26)</td>
<td>53.0 (133)</td>
<td></td>
</tr>
<tr>
<td>Large-artery atherosclerosis</td>
<td>17.0 (9)</td>
<td>6.4 (16)</td>
<td></td>
</tr>
<tr>
<td>Small-vessel disease</td>
<td>9.4 (5)</td>
<td>6.4 (16)</td>
<td>0.09</td>
</tr>
<tr>
<td>Other determined etiology</td>
<td>3.8 (2)</td>
<td>5.2 (13)</td>
<td></td>
</tr>
<tr>
<td>Undetermined etiology</td>
<td>20.7 (11)</td>
<td>29.0 (73)</td>
<td></td>
</tr>
</tbody>
</table>

Values are % (n) unless noted otherwise.
SD standard deviation, NIHSS National Institutes of Health Stroke Scale
Figure. Proportion of obese (BMI ≥ 30 kg/m²) and non-obese (BMI < 30 kg/m²) patients according to the modified Rankin Scale (mRS) scores at 3 months.
References

