Genetic determination of sleep EEG profiles in healthy humans

Landolt, H P

Abstract: The contribution of slow brain oscillations including delta, theta, alpha, and sigma frequencies (0.5-16 Hz) to the sleep electroencephalography (EEG) is finely regulated by circadian and homeostatic influences, and reflects functional aspects of wakefulness and sleep. Accumulating evidence demonstrates that individual sleep EEG patterns in non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep are heritable traits. More specifically, multiple recordings in the same individuals, as well as studies in monozygotic and dizygotic twins suggest that a very high percentage of the robust interindividual variation and the high intraindividual stability of sleep EEG profiles can be explained by genetic factors (> 90% in distinct frequency bands). Still little is known about which genes contribute to different sleep EEG phenotypes in healthy humans. The genetic variations that have been identified to date include functional polymorphisms of the clock gene PER3 and of genes contributing to signal transduction pathways involving adenosine (ADA, ADORA2A), brain-derived neurotrophic factor (BDNF), dopamine (COMT), and prion protein (PRNP). Some of these polymorphisms profoundly modulate sleep EEG profiles; their effects are reviewed here. It is concluded that the search for genetic contributions to slow sleep EEG oscillations constitutes a promising avenue to identify molecular mechanisms underlying sleep-wake regulation in humans.

DOI: https://doi.org/10.1016/B978-0-444-53839-0.00004-1

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-51116

Accepted Version

Originally published at:
DOI: https://doi.org/10.1016/B978-0-444-53839-0.00004-1
GENETIC DETERMINATION OF SLEEP EEG PROFILES IN HEALTHY HUMANS

Hans-Peter Landolt 1,2

1 Institute of Pharmacology & Toxicology, University of Zürich, Zürich, Switzerland
2 Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Switzerland

Accepted for publication: Progress in Brain Research
March 20, 2011

Acknowledgements

The author’s research was supported by Swiss National Science Foundation grant # 310000-120377 and the Zürich Center for Integrative Human Physiology (ZIHP).

Addresses for correspondence:

Hans-Peter Landolt, Ph.D.
Institute of Pharmacology & Toxicology
University of Zürich
Winterthurerstrasse 190
8057 Zürich
Switzerland
Tel. + 41 - 44 - 635 59 53
Fax. + 41 - 44 - 635 57 07
e-mail: landolt@pharma.uzh.ch
Abstract

The contribution of slow brain oscillations including delta, theta, alpha and sigma frequencies (0.5-16 Hz) to the sleep EEG is finely regulated by circadian and homeostatic influences, and reflects functional aspects of wakefulness and sleep. Accumulating evidence demonstrates that individual sleep EEG patterns in non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep are heritable traits. More specifically, multiple recordings in the same individuals, as well as studies in monozygotic and dizygotic twins suggest that a very high percentage of the robust inter-individual variation and the high intra-individual stability of sleep EEG profiles can be explained by genetic factors (> 90 % in distinct frequency bands). Still little is known about which genes contribute to different sleep EEG phenotypes in healthy humans. The genetic variations that have been identified to date include functional polymorphisms of the clock gene PER3, and of genes contributing to signal transduction pathways involving adenosine (ADA, ADORA2A), brain-derived neurotrophic factor (BDNF), dopamine (COMT), and prion protein (PRNP). Some of these polymorphisms profoundly modulate sleep EEG profiles; their effects are reviewed here. It is concluded that the search for genetic contributions to slow sleep EEG oscillations constitutes a promising avenue to identify molecular mechanisms underlying sleep-wake regulation in humans.
Introduction

The presence or absence of slow brain oscillations in the EEG, together with information obtained from an electrooculogram (EOG) and an electromyogram (EMG), underlies the polygraphic discrimination among the three basic vigilance/sleep states wakefulness, non-rapid-eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep (Iber et al., 2007). A powerful tool to quantify amplitude and prevalence of EEG oscillations with distinct frequencies is power spectral analysis based on the Fast-Fourier Transform (FFT) (Borbély et al., 1981). This method faithfully reveals the EEG characteristics of wakefulness, NREM sleep, and REM sleep. Rested wakefulness with closed eyes is characterized in many individuals by regular alpha (~ 9-12 Hz) activity. Decreasing alpha activity and increasing prevalence of theta (~ 5-9 Hz) oscillations, together with slow eye movements, herald the transition into NREM sleep (stage N1). The EEG in more superficial sleep (stage N2) is characterized by phasic events representing sleep spindles (~ 12-16 Hz, sigma frequency range) and K-complexes. In deep slow wave sleep (stage N3), high-amplitude, slow waves in the low delta frequency range (0.5-2 Hz) are most prevalent. The amplitude and prevalence of delta oscillations are highest shortly after sleep onset and decrease during sleep, in parallel with decreasing sleep depth. The decline of EEG delta activity during NREM sleep is not monotonous, but is interrupted by the periodic occurrence of REM sleep (stage R). This state is identified by low-amplitude EEG activity characterized by theta and higher frequency oscillations, rapid eye movements, and atonia in antigravity muscles.

Sleep-wake regulation

Salient features of nocturnal sleep in humans include a declining trend in EEG delta/theta activity, an increase in the frequency range of sleep spindles, and a decrease in the ratio between NREM sleep and REM sleep in the course of the night. These characteristics reflect the influence of 3 basic processes assumed to underlie physiological sleep-wake regulation (Borbély and Achermann, 2005). (1) A circadian process as the output of an oscillator with an endogenous period of roughly to 24 hours (lat. “circadian” = approximately one day) that determines the daily phases of high and low
propensity for sleep, REM sleep and wakefulness. (2) A homeostatic process keeping track of ‘sleep propensity’ or ‘sleep need’, which accumulates during wakefulness and dissipates during sleep. And (3), an ultradian process underlying the cyclic occurrence of NREM and REM sleep across the sleep episode.

According to the Two-Process Model of sleep regulation (Borbély, 1982), the interaction between the sleep-wake independent, circadian Process C and the sleep-wake dependent, homeostatic Process S regulates variations in sleep propensity, the alternation between waking and sleep episodes, NREM sleep structure and intensity, and the timing of REM sleep. Thus, sleep is an active process, which is finely and reliably regulated. Recovery sleep after sleep deprivation occurs with reduced latency, and is prolonged and more intense than baseline sleep. The duration of slow wave sleep and initial low-frequency (delta/theta) activity rise as a function of time awake, while spindle frequency activity is typically reduced after sleep loss (Borbély and Achermann, 2005; Borbély et al., 1981).

Taken together, the EEG in NREM sleep undergoes highly predictable changes reflecting physiological sleep-wake regulation. Nevertheless, abundant evidence exists that also strong genetic influences contribute to major characteristics of sleep and the sleep EEG, as well as of the waking EEG.

Heritability of waking EEG

Classic twin studies have long suggested that additive genetic factors (referred to as heritability) clearly outweigh the environmental influences on the waking EEG. More specifically, EEG profiles show much higher resemblance between monozygotic twins than between dizygotic twins and unrelated persons (Lennox et al., 1945; Vogel, 1958). Later studies revealed high test-retest correlations in spontaneous waking EEG activity and confirmed that genetic influences importantly contribute to the pronounced inter-individual differences observed in the waking EEG (Stassen et al., 1987; van Beijsterveldt et al., 1996). Boomsma and co-workers estimated that delta (1.5-3.5 Hz), theta (4.0-7.5 Hz), alpha (8.0-12.5 Hz) and beta (13.0-25.0 Hz) frequencies show heritabilities of 76%,
89 %, 89 % and 86 %, respectively (van Beijsterveldt et al., 1996). Similarly, the heritability of the peak frequency in the alpha range equals roughly 80 % (van Beijsterveldt and van Baal, 2002). Bodenmann et al. (2009a) recently reported that the functional Val158Met polymorphism of the gene encoding catechol-O-methyltransferase (COMT) predicts a difference of 1.4 Hz in alpha peak frequency between homozygous Val and Met allele carriers of COMT.

Trait-like nature of sleep and sleep EEG characteristics

Sleep architecture

Not only the waking EEG, but also self-reported and polysomnographically recorded sleep characteristics such as inter-individual variation in diurnal preference, sleep duration, sleep structure, and the EEG in NREM sleep and REM sleep have all been shown to be under strong genetic control (Landolt and Dijk, 2010). Already the first sleep studies in monozygotic twins revealed almost complete concordance in the temporal sequence of sleep stages (Zung and Wilson, 1966). Later work demonstrated that in particular those sleep variables that most reliably reflect homeostatically regulated sleep propensity are under tight genetic control. Apart from total sleep time, they include the duration of NREM sleep stages, especially slow wave sleep, and the density of rapid eye movements in REM sleep. Linkowski (1999) estimated that rapid-eye-movement-density shows heritability of 95 %.

To quantify the stability, robustness and magnitude of inter-individual variation in sleep variables, Tucker et al. (2007) completed in 21 young adults 8 all-night polysomnographic recordings interspersed with three 36-hour periods of extended wakefulness. They found that almost all sleep variables that define sleep structure exhibit stable and robust – i.e., trait-like – inter-individual differences characterized by intra-class correlation coefficients (ICC) of 36-89 %. The ICC estimates the intra-individual stability of a variable across different conditions (e.g., baseline sleep vs. recovery sleep after prolonged wakefulness) and equals for slow wave sleep 73 %. This high value reflects substantial stability across equivalent nights (baseline and recovery nights) and substantial robustness.
against external influences such as sleep deprivation (Tucker et al., 2007). Not only for slow wave sleep, but also for stage 2 (N2) and REM sleep, the robust inter-individual differences are considerably larger in magnitude than the effect of prolonged wakefulness.

The EEG in NREM sleep and REM sleep

Due to the prevalence of slow waves, the EEG in NREM sleep is characterized by highest power in the delta range and decreasing activity with increasing frequencies. Reflecting sleep spindles, a secondary prominent peak in the power spectrum is also present in the 11-16 Hz range. Even in a homogenous sample of young men adhering to stringently controlled sleep-wake patterns prior to laboratory sleep recordings (Bodenmann et al., 2009a), the EEG in NREM sleep shows pronounced inter-individual variation (Fig. 1A). To investigate whether such differences are stable and reflect individual traits, inter-individual variation and intra-individual stability in sleep and the sleep EEG characteristics were studied in 8 male volunteers across 4 separate recordings (2 pairs of baseline nights 4 weeks apart) (Buckelmüller et al., 2006). It was found that the EEG in NREM sleep, but also in REM sleep, differed largely among all individuals. The absolute power values and the shape of each subject’s spectra, however, are impressively constant. Hierarchical cluster analyses of Euclidean distances based on feature vectors of EEG spectral values demonstrated that all nights of each individual segregated into the same single cluster (Buckelmüller et al., 2006). In other words, each participant of that study could be separated from the other members of the sample, only based on the EEG power spectra in NREM sleep and REM sleep. The distribution of similarity coefficients of EEG feature vectors confirmed high between-subject variation and high within-subject stability. This was true, even when the EEG in NREM sleep was separately analyzed for the first and second halves of the nights. Thus, within-subject stability of the NREM sleep EEG is independent of homeostatic sleep pressure. By contrast, within-subject similarity between the first and second halves of each night is as low as between-subject similarity. This finding reflects the systematic EEG changes in NREM sleep associated with the dissipation of sleep propensity in the course of the night.
Another research group used an alternative approach, to examine the inter-night reliability in quantitative sleep EEG measures. Firstly, Tan et al. (2000) reported remarkably high Pearson correlation coefficients (r ≈ 0.9) in delta (0.3-3 Hz), sigma (12-15 Hz), and beta (15-23 Hz) frequencies in NREM sleep in 16 young adults (10 men, 6 women; age range: 19-26 years) who underwent five consecutive baseline night recordings. Because this high inter-night reliability was not dependent on EEG amplitude, which could reflect unspecific or extra-cerebral factors such as scull thickness, it was concluded that electrical brain activity in NREM sleep is reliable. To corroborate this conclusion, the same authors conducted a second study of 4 non-consecutive nights in 19 young (10 men, 9 women; age range: 20-25 years) and 19 elderly (8 men, 11 women; age range: 65-82 years) volunteers. They extended their analyses to 26 distinct frequency bands in NREM and REM sleep and found that the spectral values in both age groups differ significantly among individuals, yet are highly consistent within subjects. The inter-night reliability coefficients (r) equal between 0.8 and 0.95 for all frequency bands. Notably, the sleep EEG spectra in the elderly appeared to be as highly reliable as those in the young adults.

Taken together, accumulating data strongly suggest that individual EEG profiles in NREM and REM sleep are genetically determined.

Heritability of sleep EEG

This notion is further supported by the recent publication of two twin studies of the sleep EEG. Ambrosius et al. (2008) quantified the EEG profiles in NREM sleep in 35 pairs of monozygotic twins (17 male pairs, 18 female pairs; age range: 17-43 years) and 14 pairs of dizygotic twins (7 male pairs, 7 female pairs; age range: 18-26 years). Genetic variance analysis identified substantial genetic influences on spectral power in 2-13 Hz oscillations. The ICC reflecting within-pair similarity is higher in monozygotic twins (ICC ≈ 0.8) than in dizygotic twins (ICC ≈ 0.6). The differences between monozygotic and dizygotic twins include the EEG frequency bands capturing delta waves (0.75-4.5 Hz) and sleep spindles (12-13.75 Hz), yet appear most pronounced in theta and alpha (4.75-11.75 Hz) frequencies (Fig. 1B).
De Gennaro and colleagues (2008) tested the hypothesis that the EEG in NREM sleep provides an individual “fingerprint”, which is genetically determined. They recorded baseline and recovery sleep after sleep deprivation in 40 healthy subjects (mean age: 24.6 ± 2.4 years), consisting of 10 pairs of monozygotic (5 male pairs, 5 female pairs) and 10 pairs of dizygotic (5 male pairs, 5 female pairs) twins. They observed highest variability in the 8-16 Hz range and restricted their analyses to this frequency band. Group similarity as quantified by an ICC procedure is consistently higher in monozygotic twin pairs (ICC = 0.934; 95 % confidence intervals: 0.911-0.965) than in dizygotic twin pairs (ICC = 0.459; 95 % confidence intervals: 0.371-0.546). In fact, the similarity values in the monozygotic twins are comparable to the mean correlation coefficient (r = 0.958 ± 0.026) in this frequency range across six different experimental nights of single individuals (De Gennaro et al., 2005). The authors estimated that the heritability of the 8-16 Hz range in NREM sleep is as high as 95.9 % and independent of sleep propensity (De Gennaro et al., 2008). This finding suggests that the sleep EEG qualifies as the most heritable trait known so far, matched only by heritabilities for brain architecture such as the distribution of grey matter in the cerebral cortex (Andretic et al., 2008). Considering the facts that functional brain connectivity and rhythmic brain oscillations are determined by common genetic factors (Posthuma et al., 2005) and that the frequency-specific, regional distribution of EEG power in NREM sleep is highly stable (De Gennaro et al., 2005; Finelli et al., 2001), it is possible that these two traits are inter-related.

In conclusion, strong evidence suggests that the sleep EEG is a highly heritable trait. Nevertheless, the underlying genetic determinants are largely unknown. Only a few studies are currently available in humans, which investigated the effects of known allelic variants of candidate genes on the sleep EEG. Nevertheless, the findings demonstrate that single genes can profoundly modulate sleep and sleep EEG phenotypes. The findings are summarized in Table 1 and will be briefly discussed in the following paragraphs.

Genetic polymorphisms affecting sleep and sleep EEG

Variable-number-tandem-repeat polymorphism of PERIOD3 (PER3) gene
A 54-nucleotide sequence in the coding region of the clock gene PERIOD3 (PER3) located on human chromosome 1 is either repeated in four or five units (SNP-ID number: rs57875989). The repeated segments are translated into numerous potential phosphorylation sites and may alter post-translational modification and stability of PER3 protein (Dijk and Archer, 2010). Viola et al. (2007) observed that homozygous carriers of the long-repeat genotype (6 men, 4 women; mean age: 25.2 years) fall asleep more rapidly and showed more slow wave sleep than homozygous 4-repeat individuals (8 men, 6 women; mean age: 24.8 years). In addition, in recovery sleep after sleep deprivation, REM sleep is reduced in PER3$^{5/5}$ individuals compared to PER3$^{4/4}$ homozygotes.

Not only sleep architecture, but sleep EEG profiles are affected by this polymorphism. More specifically, the carriers of the PER3$^{5/5}$ genotype have higher EEG activity in the delta range (1-2 Hz) in NREM sleep and in the theta/alpha range (7-10 Hz) in REM sleep when compared to the the PER3$^{4/4}$ genotype (Viola et al., 2007). Moreover, the findings of another group suggested that the increase in slow-wave energy after acute sleep restriction is slightly elevated in adults carrying the PER3$^{5/5}$ (n = 14) genotype when compared to PER3$^{4/5}$ (n = 63) and PER3$^{4/4}$ (n = 52) allele carriers (aged 22-45 years) (Goel et al., 2009). Slow-wave energy refers to EEG power within 0.5-4.5 Hz accumulated over all epochs of stage 2-4 sleep in the first two NREM sleep episodes.

22G>A polymorphism of adenosine deaminase (ADA) gene

Convergent pharmacologic and genetic evidence strongly suggests that the adenosine neuromodulator/neurotransmitter system is importantly involved in the homeostatic regulation of sleep (Landolt, 2008). The enzyme adenosine deaminase (ADA) catalyzes the irreversible degradation of adenosine to inosine and contributes to the regulation of extracellular adenosine levels. The human ADA gene is located on chromosome 20q13.11 and encodes two electrophoretic variants of ADA, referred to as ADA*1 and ADA*2 (SNP-ID number: rs73598374). The ADA*2 variant results from a guanine-to-adenine transition at nucleotide 22, which is translated into a asparagine-to-aspartic acid substitution at codon 8. The heterozygous ADA*1-2 (G/A) genotype shows reduced catalytic activity of ADA compared to homozygous individuals carrying the ADA*1 (G/G genotype) variant (Riksen,
Rétéy et al. (2005) found that healthy adults with the G/A genotype (5 men, 2 women; mean age: 26.4 years) have roughly 30 min more slow wave sleep in an 8-hour baseline sleep episode than individually-matched subjects with the G/G genotype (5 men, 2 women; mean age: 26.1 years). This difference is similar in magnitude to the effect on recovery sleep of one night of total sleep deprivation. All other sleep variables are comparable in both genotypes.

The 22G>A polymorphism of ADA also affects the spectral composition of the sleep EEG. Thus, EEG activity is higher within the delta range in the G/A genotype compared to the G/G genotype in NREM sleep (0.25-5.5 Hz), as well as in REM sleep (2.0-2.25 and 3.5-4.75 Hz) (Rétéy et al., 2005). Consistent with these findings in humans, genetic studies in inbred mice revealed that a genomic region including Ada modifies the rate, at which NREM sleep need accumulates during wakefulness (Franken et al., 2001). Moreover, local pharmacological inhibition of ADA in rats increases extracellular adenosine concentration and the duration of deep NREM sleep (Okada et al., 2003). Bachmann et al. (manuscript under review) investigated whether G/A and G/G genotypes of ADA respond differently to prolonged wakefulness. Consistent with the previous data, these researchers found that slow wave sleep and low-frequency delta (0.75-1.5 Hz) activity in NREM sleep are elevated in G/A compared to G/G genotype. The difference is invariably present in baseline and recovery nights. In addition, ADA genotype-dependent alterations in the EEG profile are not restricted to the low-delta range in NREM sleep, but also include a pronounced increase theta/alpha frequencies (~ 6-12 Hz) in NREM sleep, REM sleep, and wakefulness.

1976T>C polymorphism of adenosine A2A receptor (ADORA2A) gene

The cellular effects of adenosine are mediated via four different subtypes of G-protein-coupled adenosine receptors: A1, A2A, A2B, and A3 receptors. For the effects on sleep and the sleep EEG, however, the A1 and A2A receptors may be primarily important (Landolt, 2008). A common synonymous 1976T>C variation (SNP-ID number: rs5751876) on chromosome 22q11.2 is located in the coding region of the adenosine A2A receptor gene (ADORA2A). This polymorphism is linked to a 2592C>T_ins polymorphism in the 3'-UTR of ADORA2A, and may modulate receptor protein
expression (Alsene et al., 2003). Rétey and co-workers observed that the 1976T>C polymorphism not only contributes to individual sensitivity to the effects of caffeine on sleep (Rétéy et al., 2007), but also affects EEG activity in all sleep/vigilance states. In a case-control study, spectral power in the \(~ 7-10 \text{ Hz}\) range was shown to be invariably higher in subjects with the C/C genotype than in subjects with the T/T genotype (Rétéy et al., 2005). Because the C allele of \emph{ADORA2A} is thought to facilitate \(A_{2A}\) receptor function when compared to the T allele, these data may suggest that genetically increased \(A_{2A}\) receptor-mediated signal transduction enhances EEG theta/alpha activity in vigilance/sleep state-unspecific manner.

\textit{196G>A polymorphism of brain-derived neurotrophic factor (BDNF) gene}

Another region in the mouse genome affecting the accumulation of sleep propensity during wakefulness includes the gene encoding the neurotrophic receptor, tyrosine kinase B (TrkB) (Franken et al., 2001). This genetic locus explains almost 50 \% of the variance in the rebound in delta activity after sleep deprivation. It may, thus, contain a major gene contributing to sleep-wake regulation. TrkB is the high-affinity receptor for brain-derived neurotrophic factor (BDNF) (Luikart and Parada, 2006), and recent findings in rats suggest that BDNF secretion is causally related to sleep homeostasis (Faraguna et al., 2008; Huber et al., 2007).

In humans, BDNF is expressed throughout the brain, particularly in prefrontal cortex and hippocampus (Pezawas et al., 2004). This neurotrophin exerts long-term effects on neuronal survival, migration, and dendritic/axonal growth. The \emph{BDNF} gene is located on chromosome 11p13 and composed of five or more exons. One functional polymorphism of this gene appears to occur with high frequency in humans (SNP-ID number: rs6265). Specifically, a guanine-to-adenine transition at nucleotide 196 produces a valine-to-methionine amino acid substitution at codon 66 of the pro-BDNF sequence. \textit{In vitro} studies suggest that the Met allele impacts activity-dependent secretion and intracellular trafficking of BDNF (Egan et al., 2003). Furthermore, neuropsychological testing revealed that this polymorphism is typically associated with reduced performance on tasks, which are
also impaired by sleep deprivation, including various types of memory, fine motor tasks and executive functions (Egan et al., 2003; Pezawas et al., 2004).

To investigate whether the Val66Met polymorphism of BDNF affects the sleep EEG, 11 carriers of the variant allele (Val/Met genotype; 4 women, 7 men; 20-29 years) were prospectively matched on an individual basis with 11 Val/Val homozygotes (4 women, 7 men; 20-29 years). Sleep and sleep EEG were studied in baseline and recovery nights after 40 hours prolonged wakefulness. In baseline and recovery conditions, slow wave sleep is shorter in Val/Met than in Val/Val genotype (Bachmann et al., manuscript under review). Moreover, in both nights, EEG activity is lower in Met allele carriers than in Val/Val homozygotes, particularly in delta (baseline: 1.5-3 Hz; recovery: 0-0.75 & 2-2.75 Hz) and theta (baseline: 6-8.25 Hz; recovery: 5.75-8 Hz) frequencies in NREM sleep. In contrast to the to previously discussed ADA and ADORA2A polymorphisms, the BDNF genotype-dependent differences in the theta range are NREM sleep-specific and not present in REM sleep and wakefulness. This finding indicates that genetic variation of adenosine and BDNF affect theta activity via different underlying mechanisms.

544G>A polymorphism of catechol-O-methyltransferase (COMT) gene

The gene encoding COMT is located on human chromosome 22q11.2, and contains a common functional 544G>A variation altering the amino acid sequence of COMT protein at codon 158 from Val to Met (SNP-ID number: rs4680). Individuals homozygous for the Val allele show higher COMT activity and lower dopaminergic signaling in prefrontal cortex than Met/Met homozygotes (Akil et al., 2003). Sleep variables and the sleep EEG response to sleep deprivation do not differ between male carriers of Val/Val and Met/Met genotypes (Bodenmann and Landolt, 2010). By contrast, the variation of the COMT gene is associated with consistently lower EEG activity in the upper alpha (11-13 Hz) range in NREM sleep, REM sleep, and wakefulness (Bodenmann et al., 2009a). The difference in NREM sleep (Fig. 2) is present before and after sleep deprivation, and altered by administration of a moderate dose of the stimulant modafinil during prolonged wakefulness. By contrast, the polymorphism, however, profoundly modulates the efficacy of
modafinil to improve impaired well-being and cognitive functions after sleep deprivation (Bodenmann et al., 2009b).

385A>G polymorphism of prion protein (PRNP) gene

A point mutation at codon 178 (in rare cases also a mutation at codon 200) of the prion protein gene (PRNP) causes fatal familial insomnia (FFI) (Lugaresi et al., 1986). Healthy relatives of FFI patients appear to have normal sleep EEG (Ferrillo et al., 2001). By contrast, the polymorphic codon 129 of the PRNP gene (SNP-ID number: rs1799990) may influence EEG activity in NREM sleep (Plazzi et al., 2002). A preliminary analysis indicated that subjects with Met/Val genotype have lower slow-wave activity and higher spindle frequency activity than individuals with the Val/Val genotype.

Concluding remarks

Polymorphic variations in a number of genes (PER3, ADA, ADORA2A, BDNF, COMT, PRNP) have now been shown to affect distinct characteristics of sleep and sleep EEG in humans. Consistent with recent findings showing that EEG differences in NREM sleep between monozygotic and dizygotic twin pairs are independent of elevated sleep propensity, profound genotype-dependent differences are mostly present in baseline and persist in recovery sleep after sleep deprivation (Table 1). The consistent effects, particularly in the theta/alpha range, of these genes in NREM sleep, REM sleep and wakefulness support the hypothesis that common neuronal mechanisms underlie the generation of major EEG oscillations. On the other hand, functional polymorphisms of PER3, ADA and BDNF cause state- and frequency-specific differences within the slow-wave range (~ 0.5-3 Hz) in NREM sleep. These genes may contribute to the regulation of sleep homeostasis. Elucidating the signaling pathways that are affected by these genetic variations will aid our understanding of molecular mechanisms underlying sleep, and may provide new targets for the pharmacological improvement of disturbed sleep in humans.
References

Table 1. Genes contributing in healthy adults to genotype-dependent differences in NREM and REM sleep EEG profiles.

<table>
<thead>
<tr>
<th>Gene</th>
<th>NCBI SNP-ID (major/minor alleles)</th>
<th>Amino acid substitution</th>
<th>NREM sleep</th>
<th>REM sleep</th>
<th>Frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline</td>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td>PER3</td>
<td>rs57875989 del(3031-3084 nt)</td>
<td>del(1011-1028 aa)</td>
<td>1.0-2.0 Hz</td>
<td>7.0-10.0 Hz</td>
<td>Delta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5-1.25 Hz</td>
<td>1.0-1.25 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.75-10.0 Hz</td>
<td>7.75-10.0 Hz</td>
<td></td>
</tr>
<tr>
<td>ADA</td>
<td>rs73598374 (G/A)</td>
<td>Asp8Asn</td>
<td>0.25-5.5 Hz</td>
<td>2.0-2.25 Hz</td>
<td>Delta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5-1.25 Hz</td>
<td>3.5-4.75 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.75-10.0 Hz</td>
<td>7.75-8.0 Hz</td>
<td>Theta</td>
</tr>
<tr>
<td>ADORA2A</td>
<td>rs5751876 (T/C)</td>
<td>n/a</td>
<td>7.25-9.0 Hz</td>
<td>6.5-9.25 Hz</td>
<td>Theta</td>
</tr>
<tr>
<td>BDNF</td>
<td>rs6265 (G/A)</td>
<td>Val66Met</td>
<td>1.5-3.0 Hz</td>
<td>0.5-0.75 Hz</td>
<td>Delta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.75 Hz</td>
<td>0.75 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0-2.75 Hz</td>
<td>2.0-2.75 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.75-8.0 Hz</td>
<td>5.75-8.0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.5-13.0 Hz</td>
<td>12.5-13.0 Hz</td>
<td></td>
</tr>
<tr>
<td>COMT</td>
<td>rs4680 (G/A)</td>
<td>Val158Met</td>
<td>10.25-12.0 Hz</td>
<td>10.5-14.0 Hz</td>
<td>Alpha</td>
</tr>
<tr>
<td>PRNP</td>
<td>rs1799990 (A/G)</td>
<td>Met129Val</td>
<td>0.5-4.0 Hz</td>
<td>0.5-4.0 Hz</td>
<td>Delta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12.5-16.0 Hz</td>
<td>12.5-16.0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sigma</td>
</tr>
</tbody>
</table>

Gene: National Center for Biotechnology Information (NCBI) gene symbol. NCBI SNP-ID number: Single nucleotide polymorphism reference number. n/a: No amino acid substitution (silent polymorphism). Frequency bands within delta (< 5 Hz), theta (~ 5-9 Hz), alpha (~ 9-12 Hz) and sigma (~ 12-16 Hz) ranges refer to significant differences between genotypes in baseline and/or recovery nights after sleep deprivation. Note the virtual independence from elevated sleep propensity of the genotype-dependent differences in NREM sleep.
Legends to the Figures

Figure 1. Healthy adults have highly variable sleep EEG profiles that are genetically determined. (A) All-night EEG power spectra in NREM sleep (stages 1-4) in 22 male volunteers (23.4±0.5 years) in baseline (mean of two baseline sleep recordings). Data from Bodenmann et al. (2009a). (B) Group differences in within-pair similarity as quantified by intra-class correlation coefficients (ICC) in distinct EEG frequency bands between monozygotic (black bars) and dizygotic (white bars) twin pairs. Thirty-five pairs of monozygotic twins (17 male pairs, 18 female pairs) and 14 pairs of dizygotic twins (7 male pairs, 7 female pairs). The ICC values were re-plotted from published data (Ambrosius et al., 2008).

Figure 2. The 544G>A (Val158Met) polymorphism of COMT modulates EEG alpha activity in NREM sleep (all-night power spectra of stages 1-4). Black bars at the bottom of the panels indicate frequency bins, which differed significantly between Val/Val (n = 10, black lines) and Met/Met (n = 12, grey lines) genotypes (p < 0.05, unpaired, two-tailed t-tests). The two baseline nights were recorded one week apart. Data from Bodenmann et al. (2009a).
Figure 1

A. EEG power in NREM sleep (μV^2)

B. Intra-class correlation coefficient

22 young men
COMT

544G>A polymorphism

Figure 2

Baseline night 1
Baseline night 2

EEG power density ($\mu V^2/Hz$)

Frequency (Hz)

- Met/Met
- Val/Val

Baseline night 1
Baseline night 2