Header

UZH-Logo

Maintenance Infos

Evolutionary diversification of the flowers in angiosperms


Endress, P K (2011). Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 98(3):370-396.

Abstract

Angiosperms and their flowers have greatly diversified into an overwhelming array of forms in the past 135 million years. Diversification was shaped by changes in climate and the biological environment (vegetation, interaction with other organisms) and by internal structural constraints and potentials. This review focuses on the development and structural diversity of flowers and structural constraints. It traces floral diversification in the different organs and organ complexes (perianth, androecium, gynoecium) through the major clades of extant angiosperms. The continuously improved results of molecular phylogenetics provide the framework for this endeavor, which is necessary for the understanding of the biology of the angiosperms and their flowers. Diversification appears to work with innovations and modifications of form. Many structural innovations originated in several clades and in special cases could become key innovations, which likely were hot spots of diversification. Synorganization between organs was an important process to reach new structural levels, from which new diversifications originated. Complexity of synorganization reached peaks in Orchidaceae and Apocynaceae with the independent evolution of pollinaria. Such a review throughout the major clades of angiosperms also shows how superficial and fragmentary our knowledge on floral structure in many clades is. Fresh studies and a multidisciplinary approach are needed.

Abstract

Angiosperms and their flowers have greatly diversified into an overwhelming array of forms in the past 135 million years. Diversification was shaped by changes in climate and the biological environment (vegetation, interaction with other organisms) and by internal structural constraints and potentials. This review focuses on the development and structural diversity of flowers and structural constraints. It traces floral diversification in the different organs and organ complexes (perianth, androecium, gynoecium) through the major clades of extant angiosperms. The continuously improved results of molecular phylogenetics provide the framework for this endeavor, which is necessary for the understanding of the biology of the angiosperms and their flowers. Diversification appears to work with innovations and modifications of form. Many structural innovations originated in several clades and in special cases could become key innovations, which likely were hot spots of diversification. Synorganization between organs was an important process to reach new structural levels, from which new diversifications originated. Complexity of synorganization reached peaks in Orchidaceae and Apocynaceae with the independent evolution of pollinaria. Such a review throughout the major clades of angiosperms also shows how superficial and fragmentary our knowledge on floral structure in many clades is. Fresh studies and a multidisciplinary approach are needed.

Statistics

Citations

109 citations in Web of Science®
114 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

414 downloads since deposited on 29 Nov 2011
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2011
Deposited On:29 Nov 2011 14:21
Last Modified:05 Apr 2016 15:07
Publisher:Botanical Society of America
ISSN:0002-9122
Publisher DOI:https://doi.org/10.3732/ajb.1000299
PubMed ID:21613132

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher