Header

UZH-Logo

Maintenance Infos

Differential magnitude coding of gains and omitted rewards in the ventral striatum


Pedroni, Andreas; Koeneke, S; Velickaite, A; Jäncke, Lutz (2011). Differential magnitude coding of gains and omitted rewards in the ventral striatum. Brain Research, 1411:76-86.

Abstract

Physiologic studies revealed that neurons in the dopaminergic midbrain of non-human primates encode reward prediction errors. It was furthermore shown that reward prediction errors are adaptively scaled with respect to the range of possible outcomes, enabling sensitive encoding for a large range of reward values. Congruently, neuroimaging studies in humans demonstrated that BOLD-responses in the ventral striatum encode reward prediction errors in similar fashion as dopaminergic midbrain neurons, suggesting that these BOLD-responses may be driven by dopaminergic midbrain activity. However, neuroimaging results are ambiguous with respect to the adaptive scaling of reward prediction errors, leading to the conjecture that under certain circumstances other than dopaminergic midbrain input may drive ventral striatal BOLD-responses. The goal of this study was to substantiate whether BOLD-responses in the ventral striatum rather respond to adaptively scaled reward prediction errors or absolute reward magnitude. In addition, we aimed to identify neuronal structures modulating activity in the ventral striatum. Sixteen healthy participants played a wheel of fortune game, where they could win three differently valued rewards while being scanned. BOLD-responses increased after gaining rewards; this gain was however independent of the absolute reward magnitude. In contrast BOLD-responses upon reward omission decreased with reward magnitude. A psychophysiological interaction analysis identified a cluster in the brainstem in proximity of the dorsal raphe nucleus, a cluster in the lateral orbitofrontal cortex, and a cluster in the rostral cingulate zone. These clusters changed their connectivity with the ventral striatum in relation to the absolute reward magnitude in reward omission trials.

Abstract

Physiologic studies revealed that neurons in the dopaminergic midbrain of non-human primates encode reward prediction errors. It was furthermore shown that reward prediction errors are adaptively scaled with respect to the range of possible outcomes, enabling sensitive encoding for a large range of reward values. Congruently, neuroimaging studies in humans demonstrated that BOLD-responses in the ventral striatum encode reward prediction errors in similar fashion as dopaminergic midbrain neurons, suggesting that these BOLD-responses may be driven by dopaminergic midbrain activity. However, neuroimaging results are ambiguous with respect to the adaptive scaling of reward prediction errors, leading to the conjecture that under certain circumstances other than dopaminergic midbrain input may drive ventral striatal BOLD-responses. The goal of this study was to substantiate whether BOLD-responses in the ventral striatum rather respond to adaptively scaled reward prediction errors or absolute reward magnitude. In addition, we aimed to identify neuronal structures modulating activity in the ventral striatum. Sixteen healthy participants played a wheel of fortune game, where they could win three differently valued rewards while being scanned. BOLD-responses increased after gaining rewards; this gain was however independent of the absolute reward magnitude. In contrast BOLD-responses upon reward omission decreased with reward magnitude. A psychophysiological interaction analysis identified a cluster in the brainstem in proximity of the dorsal raphe nucleus, a cluster in the lateral orbitofrontal cortex, and a cluster in the rostral cingulate zone. These clusters changed their connectivity with the ventral striatum in relation to the absolute reward magnitude in reward omission trials.

Statistics

Citations

11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2011
Deposited On:28 Nov 2011 16:42
Last Modified:07 Dec 2017 09:57
Publisher:Elsevier
ISSN:0006-8993
Publisher DOI:https://doi.org/10.1016/j.brainres.2011.07.019
PubMed ID:21831362

Download

Full text not available from this repository.
View at publisher