Header

UZH-Logo

Maintenance Infos

Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals


Atanesyan, L; Güther, V; Dichtl, B; Georgiev, O; Schaffner, W (2012). Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals. Biological Chemistry, 393(1-2):63-70.

Abstract

Abstract Microsatellite repeats are genetically unstable and subject to expansion and shrinkage. A subset of them, triplet repeats, can occur within the coding region and specify homomeric tracts of amino acids. Polyglutamine (polyQ) tracts are enriched in eukaryotic regulatory proteins, notably transcription factors, and we had shown before that they can contribute to transcriptional activation in mammalian cells. Here we generalize this finding by also including evolutionarily divergent organisms, namely, Drosophila and baker's yeast. In all three systems, Gal4-based model transcription factors were more active if they harbored a polyQ tract, and the activity depended on the length of the tract. By contrast, a polyserine tract was inactive. PolyQs acted from either an internal or a C-terminal position, thus ruling out a merely structural "linker" effect. Finally, a two-hybrid assay in mammalian cells showed that polyQ tracts can interact with each other, supporting the concept that a polyQ-containing transcription factor can recruit other factors with polyQ tracts or glutamine-rich activation domains. The widespread occurrence of polyglutamine repeats in regulatory proteins suggests a beneficial role; in addition to the contribution to transcriptional activity, their genetic instability might help a species to adapt to changing environmental conditions in a potentially reversible manner.

Abstract

Abstract Microsatellite repeats are genetically unstable and subject to expansion and shrinkage. A subset of them, triplet repeats, can occur within the coding region and specify homomeric tracts of amino acids. Polyglutamine (polyQ) tracts are enriched in eukaryotic regulatory proteins, notably transcription factors, and we had shown before that they can contribute to transcriptional activation in mammalian cells. Here we generalize this finding by also including evolutionarily divergent organisms, namely, Drosophila and baker's yeast. In all three systems, Gal4-based model transcription factors were more active if they harbored a polyQ tract, and the activity depended on the length of the tract. By contrast, a polyserine tract was inactive. PolyQs acted from either an internal or a C-terminal position, thus ruling out a merely structural "linker" effect. Finally, a two-hybrid assay in mammalian cells showed that polyQ tracts can interact with each other, supporting the concept that a polyQ-containing transcription factor can recruit other factors with polyQ tracts or glutamine-rich activation domains. The widespread occurrence of polyglutamine repeats in regulatory proteins suggests a beneficial role; in addition to the contribution to transcriptional activity, their genetic instability might help a species to adapt to changing environmental conditions in a potentially reversible manner.

Statistics

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

111 downloads since deposited on 09 Jan 2012
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:09 Jan 2012 13:53
Last Modified:07 Dec 2017 10:34
Publisher:De Gruyter
ISSN:1431-6730
Publisher DOI:https://doi.org/10.1515/BC-2011-252
PubMed ID:22085156

Download

Download PDF  'Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher