Header

UZH-Logo

Maintenance Infos

A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results


Paul, F; Frey, H; Le Bris, R (2011). A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results. Annals of Glaciology, 52(59):144-152.

Abstract

Meltwater from glaciers in the European Alps plays an important role in hydropower production, and future glacier development is thus of economic interest. However, an up-to-date and alpine-wide inventory for accurate assessment of glacier changes or modelling of future glacier development has not hitherto been available. Here we present a new alpine-wide inventory (covering Austria, France, Italy and Switzerland) derived from ten Landsat Thematic Mapper (TM) scenes acquired within 7 weeks in 2003. Combined with the globally available digital elevation model from the Shuttle Radar Topography Mission, topographic inventory parameters were derived for each of the 3770 mapped glaciers, covering 2050km2. The area-class frequency distribution is very similar in all countries, and a mean northerly aspect (NW, N, NE) is clearly favoured (arithmetic counting). Mean glacier elevation is ∼2900 m, with a small dependence on aspect. The total area loss since the previous glacier inventory (acquired around 1970 ±15 years) is roughly one-third, yielding a current area loss rate of ∼2%a–1. Digital overlay of the outlines from the latest Austrian glacier inventory revealed differences in the interpretation of glacier extents that prohibit change assessment. A comparison of TM- derived outlines with manually digitized extents on a high-resolution IKONOS image returned 1.5% smaller glaciers with TM.

Abstract

Meltwater from glaciers in the European Alps plays an important role in hydropower production, and future glacier development is thus of economic interest. However, an up-to-date and alpine-wide inventory for accurate assessment of glacier changes or modelling of future glacier development has not hitherto been available. Here we present a new alpine-wide inventory (covering Austria, France, Italy and Switzerland) derived from ten Landsat Thematic Mapper (TM) scenes acquired within 7 weeks in 2003. Combined with the globally available digital elevation model from the Shuttle Radar Topography Mission, topographic inventory parameters were derived for each of the 3770 mapped glaciers, covering 2050km2. The area-class frequency distribution is very similar in all countries, and a mean northerly aspect (NW, N, NE) is clearly favoured (arithmetic counting). Mean glacier elevation is ∼2900 m, with a small dependence on aspect. The total area loss since the previous glacier inventory (acquired around 1970 ±15 years) is roughly one-third, yielding a current area loss rate of ∼2%a–1. Digital overlay of the outlines from the latest Austrian glacier inventory revealed differences in the interpretation of glacier extents that prohibit change assessment. A comparison of TM- derived outlines with manually digitized extents on a high-resolution IKONOS image returned 1.5% smaller glaciers with TM.

Statistics

Citations

36 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Downloads

126 downloads since deposited on 16 Jan 2012
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2011
Deposited On:16 Jan 2012 08:45
Last Modified:05 Apr 2016 15:16
Publisher:International Glaciological Society
ISSN:0260-3055
Official URL:http://www.igsoc.org/annals/v52/59/a59A054.pdf

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 833kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations