Header

UZH-Logo

Maintenance Infos

Bioaerosols in indoor environment - a review with special reference to residential and occupational locations


Mandal, J; Brandl, H (2011). Bioaerosols in indoor environment - a review with special reference to residential and occupational locations. The Open Environmental & Biological Monitoring Journal, 2011(4):83-96.

Abstract

Bioaerosols such as bacterial and fungal cells and their spores are - along with non-biological particles - part of indoor airborne particulate matter and have been related since a long time to health issues of human beings as well as flora, and fauna. To identify the different risks and to establish exposure thresholds, microbiology of air samples from a series of indoor environments must be characterized, i.e. the different microorganisms (bacteria and fungi) must be identified and quantified. This review discusses the techniques of air sampling and sample analysis. In addition, a literature study has been performed regarding the levels of these microorganisms in various indoor occupational (e.g., schools, offices, hospitals, museums) and dwelling environments. These results will provide a significant scientific basis for indoor air quality control and help in elaborating risk prevention programs for workers and dwellers. This review shall contribute to the knowledge of identification and quantification of airborne microbial constituents in various indoor environments. Combining the indoor microbial load data with data from studies focusing on health effects caused by inhalation of specific airborne microorganisms will allow the evaluation of various risks to which inhabitants are exposed.

Abstract

Bioaerosols such as bacterial and fungal cells and their spores are - along with non-biological particles - part of indoor airborne particulate matter and have been related since a long time to health issues of human beings as well as flora, and fauna. To identify the different risks and to establish exposure thresholds, microbiology of air samples from a series of indoor environments must be characterized, i.e. the different microorganisms (bacteria and fungi) must be identified and quantified. This review discusses the techniques of air sampling and sample analysis. In addition, a literature study has been performed regarding the levels of these microorganisms in various indoor occupational (e.g., schools, offices, hospitals, museums) and dwelling environments. These results will provide a significant scientific basis for indoor air quality control and help in elaborating risk prevention programs for workers and dwellers. This review shall contribute to the knowledge of identification and quantification of airborne microbial constituents in various indoor environments. Combining the indoor microbial load data with data from studies focusing on health effects caused by inhalation of specific airborne microorganisms will allow the evaluation of various risks to which inhabitants are exposed.

Statistics

Altmetrics

Downloads

920 downloads since deposited on 19 Jan 2012
147 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Bioaerosols, microbial diversity, sampling, monitoring, occupational environment, maximum acceptable values
Language:English
Date:2011
Deposited On:19 Jan 2012 14:09
Last Modified:05 Apr 2016 15:17
Publisher:Bentham Open
ISSN:1875-0400
Publisher DOI:https://doi.org/10.2174/1875040001104010083

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 394kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations