Header

UZH-Logo

Maintenance Infos

Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia)


Keller, L F (1998). Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution, 52(1):240-250.

Abstract

Inbreeding depression is thought to be a major factor affecting the evolution of mating systems and dispersal. While there is ample evidence for inbreeding depression in captivity, it has rarely been documented in natural populations. In this study, I examine data from a long-term demographic study of an insular population of song sparrows (Melospiza melodia) and present evidence for inbreeding depression. Forty-four percent of all matings on Mandarte Island, British Columbia, were among known relatives. Offspring of a full-sib mating (f = 0.25) experienced a reduction in annual survival rate of 17.5% on average. Over their lifetime, females with f = 0.25 produced 48% fewer young that reached independence from parental care. In contrast, male lifetime reproductive success was not affected by inbreeding. Reduced female lifetime reproductive success was mostly due to reduced hatching rates of the eggs of inbred females. Relatedness among the parents did not affect their reproductive success. Using data on survival from egg stage to breeding age, I estimated the average song sparrow egg on Mandarte Island to carry a minimum of 5.38 lethal equivalents (the number of deleterious genes whose cumulative effect is equivalent to one lethal); 2.88 of these lethal equivalents were expressed from egg stage to independence of parental care. This estimate is higher than most estimates reported for laboratory populations and lower than those reported for zoo populations. Hence, the costs of inbreeding in this population were substantial and slightly above those expected from laboratory studies. Variability in estimates of lethal equivalents among years showed that costs of inbreeding were not constant across years.

Abstract

Inbreeding depression is thought to be a major factor affecting the evolution of mating systems and dispersal. While there is ample evidence for inbreeding depression in captivity, it has rarely been documented in natural populations. In this study, I examine data from a long-term demographic study of an insular population of song sparrows (Melospiza melodia) and present evidence for inbreeding depression. Forty-four percent of all matings on Mandarte Island, British Columbia, were among known relatives. Offspring of a full-sib mating (f = 0.25) experienced a reduction in annual survival rate of 17.5% on average. Over their lifetime, females with f = 0.25 produced 48% fewer young that reached independence from parental care. In contrast, male lifetime reproductive success was not affected by inbreeding. Reduced female lifetime reproductive success was mostly due to reduced hatching rates of the eggs of inbred females. Relatedness among the parents did not affect their reproductive success. Using data on survival from egg stage to breeding age, I estimated the average song sparrow egg on Mandarte Island to carry a minimum of 5.38 lethal equivalents (the number of deleterious genes whose cumulative effect is equivalent to one lethal); 2.88 of these lethal equivalents were expressed from egg stage to independence of parental care. This estimate is higher than most estimates reported for laboratory populations and lower than those reported for zoo populations. Hence, the costs of inbreeding in this population were substantial and slightly above those expected from laboratory studies. Variability in estimates of lethal equivalents among years showed that costs of inbreeding were not constant across years.

Statistics

Citations

226 citations in Web of Science®
231 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 27 Apr 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:February 1998
Deposited On:27 Apr 2012 07:22
Last Modified:05 Apr 2016 15:17
Publisher:Wiley-Blackwell
ISSN:0014-3820
Publisher DOI:https://doi.org/10.2307/2410939
Other Identification Number:ISI:000072433200026

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher