Header

UZH-Logo

Maintenance Infos

Neuronal plasticity after a human spinal cord injury: Positive and negative effects


Dietz, V (2012). Neuronal plasticity after a human spinal cord injury: Positive and negative effects. Experimental Neurology, 235(1):110-115.

Abstract

In patients suffering an incomplete spinal cord injury (SCI) an improvement in walking function can be achieved by providing a functional training with an appropriate afferent input. In contrast, in immobilized incomplete and complete subjects a negative neuroplasticity leads to a neuronal dysfunction. After an SCI, neuronal centers below the level of lesion exhibit plasticity that either can be exploited by specific training paradigms or undergo a degradation of function due to the loss of appropriate input. Load- and hip-joint-related afferent inputs seem to be of crucial importance for the generation of a locomotor pattern and, consequently, the effectiveness of the locomotor training. In severely affected SCI subjects rehabilitation robots allow for a longer and more intensive training and can provide feedback information. Conversely, in severely affected chronic SCI individuals without functional training the locomotor activity in the leg muscles exhausts rapidly during assisted locomotion. This is accompanied by a shift from early to dominant late spinal reflex components. The exhaustion of locomotor activity is also observed in non-ambulatory patients with an incomplete SCI. It is assumed that in chronic SCI the patient's immobility results in a reduced input from supraspinal and peripheral sources and leads to a dominance of inhibitory drive within spinal neuronal circuitries underlying locomotor pattern and spinal reflex generation. A training with an enhancement of an appropriate proprioceptive input early after an SCI might serve as an intervention to prevent neuronal dysfunction.

Abstract

In patients suffering an incomplete spinal cord injury (SCI) an improvement in walking function can be achieved by providing a functional training with an appropriate afferent input. In contrast, in immobilized incomplete and complete subjects a negative neuroplasticity leads to a neuronal dysfunction. After an SCI, neuronal centers below the level of lesion exhibit plasticity that either can be exploited by specific training paradigms or undergo a degradation of function due to the loss of appropriate input. Load- and hip-joint-related afferent inputs seem to be of crucial importance for the generation of a locomotor pattern and, consequently, the effectiveness of the locomotor training. In severely affected SCI subjects rehabilitation robots allow for a longer and more intensive training and can provide feedback information. Conversely, in severely affected chronic SCI individuals without functional training the locomotor activity in the leg muscles exhausts rapidly during assisted locomotion. This is accompanied by a shift from early to dominant late spinal reflex components. The exhaustion of locomotor activity is also observed in non-ambulatory patients with an incomplete SCI. It is assumed that in chronic SCI the patient's immobility results in a reduced input from supraspinal and peripheral sources and leads to a dominance of inhibitory drive within spinal neuronal circuitries underlying locomotor pattern and spinal reflex generation. A training with an enhancement of an appropriate proprioceptive input early after an SCI might serve as an intervention to prevent neuronal dysfunction.

Statistics

Citations

16 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Date:2012
Deposited On:04 Jan 2012 14:22
Last Modified:05 Apr 2016 15:19
Publisher:Elsevier
ISSN:0014-4886
Publisher DOI:https://doi.org/10.1016/j.expneurol.2011.04.007
PubMed ID:21530507

Download

Full text not available from this repository.
View at publisher