Header

UZH-Logo

Maintenance Infos

Streptococcal M1 protein constructs a pathological host fibrinogen network


Macheboeuf, P; Buffalo, C; Fu, C Y; Zinkernagel, A S; Cole, J N; Johnson, J E; Nizet, V; Ghosh, P (2011). Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature, 472(7341):64-68.

Abstract

M1 protein, a major virulence factor of the leading invasive strain of group A Streptococcus, is sufficient to induce toxic-shock-like vascular leakage and tissue injury. These events are triggered by the formation of a complex between M1 and fibrinogen that, unlike M1 or fibrinogen alone, leads to neutrophil activation. Here we provide a structural explanation for the pathological properties of the complex formed between streptococcal M1 and human fibrinogen. A conformationally dynamic coiled-coil dimer of M1 was found to organize four fibrinogen molecules into a specific cross-like pattern. This pattern supported the construction of a supramolecular network that was required for neutrophil activation but was distinct from a fibrin clot. Disruption of this network into other supramolecular assemblies was not tolerated. These results have bearing on the pathophysiology of streptococcal toxic shock.

Abstract

M1 protein, a major virulence factor of the leading invasive strain of group A Streptococcus, is sufficient to induce toxic-shock-like vascular leakage and tissue injury. These events are triggered by the formation of a complex between M1 and fibrinogen that, unlike M1 or fibrinogen alone, leads to neutrophil activation. Here we provide a structural explanation for the pathological properties of the complex formed between streptococcal M1 and human fibrinogen. A conformationally dynamic coiled-coil dimer of M1 was found to organize four fibrinogen molecules into a specific cross-like pattern. This pattern supported the construction of a supramolecular network that was required for neutrophil activation but was distinct from a fibrin clot. Disruption of this network into other supramolecular assemblies was not tolerated. These results have bearing on the pathophysiology of streptococcal toxic shock.

Statistics

Citations

45 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:21 Jan 2012 18:20
Last Modified:07 Dec 2017 11:25
Publisher:Nature Publishing Group
ISSN:0028-0836
Publisher DOI:https://doi.org/10.1038/nature09967
PubMed ID:21475196

Download

Full text not available from this repository.
View at publisher