Header

UZH-Logo

Maintenance Infos

Cortical network for gaze control in humans revealed using multimodal MRI


Anderson, E J; Jones, D K; O'Gorman, R L; Leemans, A; Catani, M; Husain, M (2012). Cortical network for gaze control in humans revealed using multimodal MRI. Cerebral Cortex, 22(4):765-775.

Abstract

Functional magnetic resonance imaging (fMRI) techniques allow definition of cortical nodes that are presumed to be components of large-scale distributed brain networks involved in cognitive processes. However, very few investigations examine whether such functionally defined areas are in fact structurally connected. Here, we used combined fMRI and diffusion MRI-based tractography to define the cortical network involved in saccadic eye movement control in humans. The results of this multimodal imaging approach demonstrate white matter pathways connecting the frontal eye fields and supplementary eye fields, consistent with the known connectivity of these regions in macaque monkeys. Importantly, however, these connections appeared to be more prominent in the right hemisphere of humans. In addition, there was evidence of a dorsal frontoparietal pathway connecting the frontal eye field and the inferior parietal lobe, also right hemisphere dominant, consistent with specialization of the right hemisphere for directed attention in humans. These findings demonstrate the utility and potential of using multimodal imaging techniques to define large-scale distributed brain networks, including those that demonstrate known hemispheric asymmetries in humans.

Abstract

Functional magnetic resonance imaging (fMRI) techniques allow definition of cortical nodes that are presumed to be components of large-scale distributed brain networks involved in cognitive processes. However, very few investigations examine whether such functionally defined areas are in fact structurally connected. Here, we used combined fMRI and diffusion MRI-based tractography to define the cortical network involved in saccadic eye movement control in humans. The results of this multimodal imaging approach demonstrate white matter pathways connecting the frontal eye fields and supplementary eye fields, consistent with the known connectivity of these regions in macaque monkeys. Importantly, however, these connections appeared to be more prominent in the right hemisphere of humans. In addition, there was evidence of a dorsal frontoparietal pathway connecting the frontal eye field and the inferior parietal lobe, also right hemisphere dominant, consistent with specialization of the right hemisphere for directed attention in humans. These findings demonstrate the utility and potential of using multimodal imaging techniques to define large-scale distributed brain networks, including those that demonstrate known hemispheric asymmetries in humans.

Statistics

Citations

24 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

108 downloads since deposited on 29 Jan 2012
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2012
Deposited On:29 Jan 2012 15:47
Last Modified:12 Aug 2017 04:43
Publisher:Oxford University Press
ISSN:1047-3211
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/cercor/bhr110
PubMed ID:21693784

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF (Article in press)
Size: 1MB
View at publisher