Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation

Lekakis, J; Abraham, P; Balbarini, A; Blann, A; Boulanger, C M; Cockcroft, J; Cosentino, F; Deanfield, J; Gallino, A; Ikonomidis, I; Kremastinos, D; Landmesser, U; Protogerou, A; Stefanadis, C; Tousoulis, D; Vassali, G; Vink, H; Werner, N; Wilkinson, I; Vlachopoulos, C

Abstract: The endothelium holds a pivotal role in cardiovascular health and disease. Assessment of its function was until recently limited to experimental designs due to its location. The advent of novel techniques has facilitated testing on a more detailed basis, with focus on distinct pathways. This review presents available in-vivo and ex-vivo methods for evaluating endothelial function with special focus on more recent ones. The diagnostic modalities covered include assessment of epicardial and microvascular coronary endothelial function, local vasodilation by venous occlusion plethysmography and flow-mediated dilatation, arterial pulse wave analysis and pulse amplitude tonometry, microvascular blood flow by laser Doppler flowmetry, biochemical markers and bioassays, measurement of endothelial-derived microparticles and progenitor cells, and glycocalyx measurements. Insights and practical information on the theoretical basis, methodological aspects, and clinical application in various disease states are discussed. The ability of these methods to detect endothelial dysfunction before overt cardiovascular disease manifests make them attractive clinical tools for prevention and rehabilitation.

DOI: https://doi.org/10.1177/1741826711398179

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-56064
Accepted Version

Originally published at:
Lekakis, J; Abraham, P; Balbarini, A; Blann, A; Boulanger, C M; Cockcroft, J; Cosentino, F; Deanfield, J; Gallino, A; Ikonomidis, I; Kremastinos, D; Landmesser, U; Protogerou, A; Stefanadis, C; Tousoulis, D; Vassali, G; Vink, H; Werner, N; Wilkinson, I; Vlachopoulos, C (2011). Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. European Journal of Cardiovascular Prevention and Rehabilitation, 18(6):775-789. DOI: https://doi.org/10.1177/1741826711398179
METHODS FOR EVALUATING ENDOTHELIAL FUNCTION.
A POSITION STATEMENT FROM THE EUROPEAN SOCIETY OF CARDIOLOGY WORKING GROUP ON PERIPHERAL CIRCULATION.

John Lekakisa, Pierre Abrahamb, Alberto Balbarinic, Andrew Blannd, Chantal Boulangere, John Cockcroftf, Francesco Cosentinog, John Deanfieldh, Augusto Gallinoi, Ignatios Ikonomidisa, Dimitrios Kremastinosa, Ulf Landmesserj, Athanase Protogerouk, Christodoulos Stefanadisl, Dimitrios Tousoulisl, Giuseppe Vassallim, Hans Vinkn, Nikos Wernero, Ian Wilkinsonp, Charalambos Vlachopoulos m

a2nd Cardiology Department, Attikon Hospital, University of Athens, Greece; b Laboratory for Vascular Investigations, University Hospital of Angers, France; c Cardio-thoracic Department, University of Pisa, Italy; d University Department of Medicine, City Hospital, Birmingham, UK; e INSERM, U970, Paris Cardiovascular Research Center–PARCC, Paris, France; f Cardiology Department, University of Wales, Cardiff, UK; g Division of Cardiology, 2nd Faculty of Medicine, University “La Sapienza”, Rome, Italy; h Vascular Physiology Unit, UCL Institute of Child Health, London, UK; i Division of Cardiovascular Medicine, Ospedale San Giovanni (EOC), Bellinzona, Switzerland; j Department of Cardiology; University Hospital Zürich, Switzerland; k Hypertension Unit, Laikon Hospital, University of Athens, Greece; l Department of Cardiology, Hippokratieon Hospital, University of Athens, Greece; m Division de Cardiologie, CHUV, Lausanne, Switzerland; n Department of Physiology, Cardiovascular Research Institute, Maastricht University, the Netherlands; o Department of Internal Medicine II, University Hospital Bonn, Germany; p Clinical Pharmacology Unit, Addenbrooke’s Hospital, Cambridge, UK

Short title: Methods for evaluating endothelial function

Conflicts of interest/funding: none

Word count: 10332, Abstract word count: 152, Tables: 2, Figures: 8

Address for correspondence/reprints:
Charalambos Vlachopoulos, MD; Profiti Elia 24, Athens 14575, Greece, email: cvlachop@otenet.gr
ABSTRACT

The endothelium holds a pivotal role in cardiovascular health and disease. Assessment of its function was until recently limited to experimental designs due to its location. The advent of novel techniques has facilitated testing on a more detailed basis, with focus on distinct pathways. This review presents available in-vivo and ex-vivo methods for evaluating endothelial function with special focus on more recent ones. The diagnostic modalities covered include assessment of epicardial and microvascular coronary endothelial function, local vasodilation by venous occlusion plethysmography and flow-mediated dilatation, arterial pulse wave analysis and pulse amplitude tonometry, microvascular blood flow by laser Doppler flowmetry, biochemical markers and bioassays, measurement of endothelial-derived microparticles and progenitor cells, and glycocalyx measurements. Insights and practical information on the theoretical basis, methodological aspects, and clinical application in various disease states are discussed. The ability of these methods to detect endothelial dysfunction before overt cardiovascular disease manifests make them attractive clinical tools for prevention and rehabilitation.

Keywords: biomarkers; cell-derived microparticles; coronary angiography; endothelium; glycocalyx; nitric oxide; plethysmography; progenitor cells; pulse; laser-doppler flowmetry
Endothelial function: key biochemical concepts

The endothelium actively regulates basal vascular tone and reactivity under both physiological and pathological conditions; its activity extends far beyond the control of vascular tone and vasomotion. In addition, a functional endothelium is a major regulator of vascular inflammation and remodelling. An intact endothelial layer is critical for preventing circulating blood cells from exposure to prothrombotic subendothelial matrix and inhibits arterial thrombus formation by limiting platelet activation, adhesion, and aggregation. In the presence of cardiovascular risk factors, an excessive production of superoxide (O$_2^-$) occurs rapidly, inactivating nitric oxide (NO). Loss of NO bioavailability precedes the development of overt atherosclerosis and is an independent predictor of adverse cardiovascular events. Efforts have been made at translating this knowledge into clinical applications by developing methods for assessing endothelial function in coronary arteries. Subsequently, these applications have been expanded to other vascular territories.

Coronary endothelial function

Despite its invasive nature, angiography remains a broadly used technique for assessing endothelial function of epicardial coronary arteries owing to its availability in clinical routine. Pharmacological stimuli to assess epicardial coronary vasodilation include intracoronary infusion of acetylcholine (ACh), metacholine, or papaverine. ACh has been widely used due to the short duration of its effect and favourable safety features. It typically causes paradoxical vasoconstriction, as opposed to dilatation, in endothelium-denuded arteries in vitro as well as in atherosclerotic coronary arteries in vivo, in part due to impaired muscarinic cholinergic vasodilation in coronary atherosclero-
Adenosine is an endothelium-independent vasodilator primarily of the microcirculation. It therefore induces an increase in blood flow, which can be used to assess flow-mediated vasodilatation. Nitroglycerin has been routinely used to assess endothelium-independent vasodilation owing to direct relaxation of vascular smooth muscle cells. It is important to administer intracoronary vasodilator agents as infusions of increasing concentrations to assess dose-response effects.

Methodology

For epicardial coronary vessels, quantitative coronary angiography (QCA) measures changes in their diameter. Changes are usually compared with baseline conditions and with vasodilation induced by endothelium-independent drugs. More recently, non-invasive QCA has been developed by using computed tomography imaging or magnetic resonance imaging. In the microvasculature, changes in coronary blood flow are assessed by vessel diameter and Doppler flow velocities (online supplemental material and Supplemental Figure 1). Given the invasive nature of the technique, patients should be selected carefully. As an example, patients presenting with left main coronary artery stenosis should not be considered for this procedure. Non-invasive methods, such as MRI and positron emission tomography (PET), for assessment of coronary microvascular function have shown impressive improvements. MRI allows an accurate quantification of myocardial function, infarct size, and microvascular function. PET imaging is a method of choice for myocardial blood flow measurement. Combined with pharmacological or physiological endothelium-dependent stimuli (e.g. cold pressor testing), it is very valuable in assessing microvascular coronary endothelial function.
An additional method that holds great promise for non-invasive assessment of microvascular function is thermodilution.7,8

Clinical applications

Epicardial and microvascular coronary endothelial dysfunction is an independent predictor of acute cardiovascular events irrespective of presence or absence of angiographically detectable coronary lesions.9,10 Assessment of coronary endothelial function is particularly important in cardiac transplant recipients because the endothelium is an early target of ischaemic, immunological, and pharmacological graft injury, including ciclosporin-related vasculopathy. In addition, the concentric nature (intimal thickening) and diffuse distribution of graft coronary artery lesions may hamper their early detection by angiography. Both epicardial and microvascular endothelium-dependent vasomotor dysfunction has been shown to correlate with the development of graft atherosclerosis in transplanted patients.11

Venous occlusion plethysmography

Venous occlusion plethysmography (VOP), established more than 100 years ago, is the longest living method for investigating blood flow in humans.12

Methodology

The main principle of VOP is based on the measurement of tissue (usually muscular) blood flow by the assessment of the tissue volume change, which is induced by the inflation of a cuff proximally to the under evaluation tissue. The cuff is inflated up to that pressure which occludes venous outflow (return) but allows arterial inflow. The rate
of the volume change is therefore proportional to the rate of arterial inflow. She most widely applied method of VOP is based on the use of automatically calibrated mercury-in-silastic strain gauges,13,14 which are placed as rings around the under examination limb. A minimally invasive, modified strain-gauge VOP method is being applied in the forearm since the early 1990s in order to investigate in vivo the endothelial function in the human microcirculation. This technique requires brachial artery cannulation for intra-arterial infusion of endothelial agonists (mainly ACh or metacholine, bradykinin, etc.), which act via specific receptors and induce NO production from endothelial cells. Endothelial agonists are infused in escalating doses that induce local vasodilation without systemic haemodynamic effects.15,16 Endothelial function is estimated by the dose–response of the forearm blood flow (FBF, ml/min/100ml tissue) due to the local endothelium-dependent vasodilation. Subsequent intra-arterial infusion of direct smooth muscle relaxing factors (e.g. nitrates) is used in order to evaluate the effect of endothelium-independent vasodilation on FBF. Ideally, simultaneous recordings of FBF at the contralateral arm are required in order to verify the absence of any systemic haemodynamic effects, induced by the intra-arterial drug infusion. Strain-gauge VOP is a highly reproducible method that provides valid results with the investigation of a relatively limited sample size. Moreover, due to its invasive nature, it permits the local infusion of substances enabling the investigation of endothelial function. Therefore it is an excellent research tool. On the other hand, the main disadvantage of the FBF technique is its very same invasive nature, which limits its application in clinical practice.

Clinical applications
A very large body of evidence documented the presence of impaired endothelium-dependent relaxation (low ACh-induced FBF, ACh-FBF) microcirculation in patients with cardiovascular risk factors. Moreover, prospective studies have shown that endothelial dysfunction, as assessed by ACh-FBF, is an independent predictor of cardiovascular events in subjects with essential hypertension and coronary artery disease.

Flow-mediated dilatation

Conduit vessels respond to alterations in blood flow by increasing vessel diameter via an endothelial dependent mechanism. The flow-mediated dilatation (FMD) technique measures changes in conduit artery diameter by ultrasound. This response has been shown to reflect local bioactivity of endothelial-derived NO.

Methodology

The brachial artery is most often imaged (online Supplemental Figure 2). FMD studies are performed in a quiet temperature controlled room while subjects are lying supine for >10 min prior to image acquisition. A straight, non-branching segment of the brachial artery above the antecubital fossa is imaged in the longitudinal plane with the ultrasound probe securely fixed using a stereotactic clamp. This permits fine adjustments in the coronal and sagittal planes. A blood pressure cuff is placed 1-2 cm below the antecubital fossa and inflated to supra-systolic pressure. After cuff release, reactive hyperaemia results and is quantified using Doppler. The arterial diameter is recorded at end diastole using electrocardiographic gating during image acquisition, to determine the response of the conduit artery to increase in flow. Changes in the arterial diameter are assessed using commercial digital edge detection software. Flow-mediated dilatation
is expressed as a percentage change of the arterial diameter from the baseline vessel size. Phantom studies have demonstrated that differences in absolute diameter of as little as 0.04mm can be detected and differences in artery diameter of 0.1mm can be reliably distinguished. Inter- and intraobserver variability studies and assessment of change in FMD over time have enabled construction of power curves for different clinical trial protocols. Well-trained operators are essential to obtain such accurate, reproducible measurements.

Clinical applications

FMD has been shown to be impaired in response to a range of classical and novel risk factors from the first decade of life and to decline in proportion to risk factor burden. In addition, it was shown that impaired endothelial function is associated with more rapid progression of a measure of structural arterial disease, carotid intima media thickness in an asymptomatic middleaged population. Several studies have shown a relationship between endothelial dysfunction and clinical events in high-risk cohorts. FMD changes rapidly and can be restored by beneficial lifestyle changes and medical therapy such as statin use.

Pulse wave analysis

The arterial waveform contains important information about the stiffness of the large arteries and amount of wave reflection within the arterial system. Wave reflection occurs at sites of impedance mismatch, often branch points, and is usually quantified by determining the augmentation index (AIx), which represents the difference between the first and second systolic peaks. Although the impedance of the large, elastic
arteries is relatively static, impedance of the small arteries and arterioles is much more dynamic and depends to a large extent on smooth muscle tone and vessel size. Thus, changes in small artery tone affect wave reflection: vasodilatation reduces AIX, whereas vasoconstriction increases it.33 One of the main factors regulating vascular tone is endothelium-derived NO, and it is now clear that, through this mechanism, NO also influences wave reflection and, therefore, the shape of the arterial wave. Glyceryl trinitrate (GTN), an NO donor, reduces wave reflection at low doses before any measurable effect on resistance or mean pressure,34 suggesting that small arteries are more sensitive to GTN than resistance vessels. Conversely, inhibiting endogenous NO production with LG-monomethyl L-arginine increases wave reflection.35 Klemsdal et al.36 demonstrated that ACh, an endothelium-dependent nitrovasodilator, reduces wave reflection in rabbits and that this effect is attenuated in hypercholesterolaemic animals with endothelial dysfunction. This important observation led Chowienczyk et al.37 to propose that endothelial function could be assessed in humans by recording the shape of the arterial waveform and administering GTN as an endothelium-independent stimulus and the endothelium-dependent agonist salbutamol. Since both drugs could be given non-invasively – sublingual and inhaled, respectively – this meant a truly non-invasive method for assessing endothelial function. Subsequent work confirmed the endothelium-dependent nature of salbutamol’s effect on AIX and that the technique was repeatable and correlated with more established methodologies.38

Methodology
A number of versions have been described, but all rely on non-invasive waveform recording, and administration of GTN and a b2 agonist. Details on the procedure can be found in online supplemental material and Supplemental Figure 3.

Clinical applications

Given the novelty of the technique, relatively few clinical studies have employed pulse wave analysis (PWA) to assess endothelial function. However, impaired endothelium-dependent responses have been observed in conditions traditionally associated with endothelial dysfunction, including diabetes, hypercholesterolaemia, coronary artery disease, peripheral vascular disease, and rheumatoid arthritis. The GTN response is usually preserved. An inverse correlation between terbutaline response and Framingham risk score has been reported, along with a stronger correlation between individual risk factors and endothelial function assessed with PWA compared to FMD. At present there are no data relating the PWA technique to treatment effects or outcome.

Peripheral arterial tonometry

Measurement of peripheral vasodilator response with fingertip peripheral arterial tonometry (PAT) technology (EndoPAT; ItamarMedical, Caesarea, Israel) is emerging as a useful method for assessing vascular function. Although PAT signal is modulated by various local, systemic, and environmental factors, this parameter is also affected by the bioavailability of NO and, therefore, also depends on endothelial function. In response to hyperaemic flow, digital pulse amplitude (and hence PAT signal amplitude) increases, a response that has been shown to depend in part on NO synthesis.
Methodology

The EndoPAT device consists of two finger-mounted probes, which include a system of inflatable neoprene membranes within a rigid external case. A blood pressure cuff is placed on one upper arm (study arm), while the contralateral arm serves as a control (control arm). The EndoScore is calculated as the ratio of the average amplitude of the PAT signal over a 1-min time interval starting 1.5 min after cuff deflation divided by the average amplitude of the PAT signal of a 3.5-min time period before cuff inflation (baseline) (Figure 1). \(^{46}\) Augmentation index is also automatically calculated as an average from multiple pulses using the formula \((P2-P1)/P1\) (\%) where \(P1\) is the peak pressure of the recorded pulse wave and \(P2\) is the pressure of the inflection point corresponding to the arrival of the reflected waves.

Clinical applications

Digital reactive hyperaemia, as measured by EndoScore, is attenuated in patients with coronary endothelial dysfunction, suggesting a role as a non-invasive tool to identify patients during the early stage of CAD. \(^{46}\) The EndoScore was reduced in subjects with impaired endothelial function represented by low FMD and was higher in subjects with greater brachial artery FMD responses consistent with more preserved endothelial function. \(^{43}\) The EndoScore was more impaired in subjects with exercise myocardial perfusion imaging studies that were indicative of coronary artery disease. \(^{43}\) In participants of the Framingham Heart Study, obesity and diabetes mellitus, along with the associated dyslipidaemia and insulin resistance, have been linked to impaired vasodilator responses. \(^{47,48}\) Measurements of the PAT index in healthy male adults demonstrated sig-
nificantly increased responses after the ingestion of a high-flavanol cocoa drink as compared with after a low-flavanol cocoa drink.49 Regarding the incremental value of PAT, patients at low Framingham Risk Score risk but with endothelial dysfunction are at a higher actual risk than patients with high Framingham Risk Score but normal endothelial function. Furthermore, endothelial dysfunction was found to be an independent risk factor for a future major adverse cardiovascular event.50 Research work is lacking for the evaluation of the potential role of EndoScore in risk stratification for individuals. Data on circadian variation, changes after meals and during concurrent illnesses, or after cardioactive medication, blood pressure lowering and/or lipid lowering interventions are also missing.

\textbf{Laser Doppler flowmetry}

Laser Doppler flowmetry (LDF) is a technique enabling the monitoring of skin microvascular blood flow.51 The assumption is that the response observed in the cutaneous circulation is a window towards the responses that should be observed in other vascular beds.52

\textbf{Methodology}

During LDF, the original beam of coherent light changes in contact with moving tissues (red blood cells) and a photodiode measures the emerged beam. The fraction of shifted light depends on the concentration of moving red blood cells, whereas the magnitude of the frequency broadening depends on their average velocity.53 Many techniques can be associated to LDF to estimate endothelial function among which direct delivery of ACh through iontophoresis or micro-dialysis (Figure 2). Other techniques
can also be used such as post-occlusive hyperaemia or local skin heating. The major advantages are that LDF measures skin blood flow in a non-invasive manner and the direct delivery of ACh to the tissues. The response is monitored non-invasively when using iontophoresis or with the minimally invasive micro-dialysis technique. Microdialysis requires that a small micro-porous catheter is inserted under the epidermal surface. Iontophoresis, the migration of charged substances through the skin by means of small continuous galvanic current, allows very small amounts of drugs to be administered non-invasively and safely to a localized area. The ACh induced vasodilatation during iontophoresis is biphasic and involves prostanoid participation. Various other drugs (adrenaline, insulin, sodium nitroprusside, etc.) can be used to test different pathways. These have almost no systemic effect, allowing the use of the technique even in neonates. Further details on LDF methodology can be found in the online supplemental material.

Clinical applications

ACh iontophoresis is impaired in disease states such as sleep obstructive apnoea syndrome, obesity or diabetes, heart transplant recipients, hypercholesterolaemia or hypertension even in the absence of macrovascular lesions, and the impaired response can be improved after treatment. To date, an altered response to ACh iontophoresis cannot be used for treatment indication, although it has been shown that many drugs that have proved benefit in cardiovascular disease or diabetes can improve the ACh response. Spectral analysis of the LDF signal, standardization of the protocols, and a better knowledge of technical issues of iontophoresis are still needed. Nevertheless, LDF is an easy and relatively cost-effective technique to approach endothelial function;
furthermore, it offers the unique opportunity to test various pathways of the vascular response.

Biochemical markers and bioassays

Several markers have been used to examine different aspects of endothelial cell functions (Figure 3). This review focuses on asymmetrical dimethylarginine (ADMA) and oxidized low-density lipoprotein (oxLDL), two key markers of endothelial function. ADMA, a product of arginine methylation, represents an endogenous inhibitor of endothelial NO synthase. ADMA is, however, not a specific endothelial NO synthase inhibitor, but does also inhibit the other NO synthases (iNOS and nNOS). Cross-sectional studies have suggested that ADMA plasma concentrations are increased in patients with vascular disease, renal failure, or cardiovascular risk factors. A large recent cross-sectional analysis suggested an overall significant, but rather modest inverse association between ADMA and endothelial function as measured by flow-dependent vasodilation. Studies suggest that increased ADMA plasma levels are independently associated with an elevated risk of future cardiovascular events; however, a recent analysis did not observe an association of ADMA plasma levels with the incidence of cardiovascular disease. Therefore, at present, ADMA measurements may not represent a reliable ‘replacement’ of a direct endothelial function measurement, and its association with cardiovascular prognosis may depend on the patient cohort studied. Oxidized LDL has been suggested to contribute importantly to endothelial dysfunction and progression of atherosclerosis. Endothelial activation in response to oxidized LDL is likely in particular mediated by the lectin-like oxidized LDL receptor (LOX-1) present on endothelial cells. Oxidized LDL levels are difficult to assess in vivo, and in plasma there are likely
only minimally oxidized LDLs present. Several monoclonal antibodies have been used to characterize circulating oxidized LDL levels.71 Increased levels of oxidized LDL were predictive of future coronary disease events in apparently healthy men,72 while plasma oxidized LDL levels predicted the risk of CHD in a large prospective study.73 However, after adjustment for lipid markers such as apoB and LDL, no independent predictive value for plasma oxidized LDL levels was observed. Endothelial bioassays can be employed in order to examine the potential effects of therapeutic interventions on endothelial cell functions. Isolated highdensity lipoprotein (HDL) from healthy subjects stimulates endothelial cell NO production, whereas HDL isolated from diabetic patients with low HDL failed to do so,74 suggesting that the endothelial effects of HDL are markedly altered in these patients and can be partly restored by niacin therapy. In vitro, pathological levels of oxidized LDL are directly cytotoxic to human umbilical vein endothelial cells, and this results in increased release of von Willebrand factor, which is associated with a risk of future coronary heart disease.75

Endothelial microparticles

Microparticles (MPs) are vesicles (100nm to 1 mm diameter) shed from plasma membranes following cell activation or apoptosis.76 MPs of different cellular origins (platelets, leukocytes, red blood cells, endothelial cells, etc.) are found in the plasma of healthy subjects and their circulating levels augment in atherothrombotic diseases. Although MPs originating from endothelial cells (EMP) represent a small fraction of the overall pool of plasma MPs, increased circulating EMP levels constitute an emerging surrogate marker of endothelial dysfunction. If the mechanisms leading to their in-vivo formation remain obscure, release of EMPs from cultured cells is increased by tumor
necrosis factor α, thrombin, uraemic toxins, and reactive oxygen species. Endothelial apoptosis does not appear to be a prerequisite for EMPs generation. Interestingly, endothelial NOS uncoupling contributes to EMP release, emphasizing the possible reciprocal relationships between EMP and endothelial dysfunction. Low shear stress associates with increased EMP levels, suggesting that physiological shear stress, known to contribute to endothelial survival, may limit EMPs release.

Methodology

Microparticles can be numbered and their cellular origin characterized using different methodological approaches based on the identification of cell-surface clusters of differentiation (CD) using specific antibodies and/or the presence of externalized phosphatidylserine, which does not discriminate between MP of different cellular origin. Great care should be taken to use appropriate controls (e.g. no calcium for annexin V labelling) and appropriate isotypes to assess unspecific labeling. EMP may express adhesion molecules harboured by mature endothelial cells such as CD54 (ICAM-1), CD106 (VCAM-1), CD62E (E-selectin), CD62P (P-selectin), or CD31 (PECAM-1). EMP also may harbor CD105 (endoglin, also expressed by activated monocyte-macrophages and bone marrow cell subsets), CD144 (VE-cadherin), and CD146 (S-endo-1, an endothelial junctional protein), and they bind von Willebrand factor. Proteomic studies report different EMP phenotypes depending of the vesiculation stimulus. So far, CD144, CD146, and CD62E appear to be the most specific markers attesting for the endothelial origin of MPs (Figure 4). Methodological details regarding EMP assessment can be found in the online supplemental material.
Clinical applications

Circulating EMP levels increase in several cardiovascular and atherothrombotic diseases. In end-stage renal disease, EMP plasma levels correlate with arterial stiffness and the impairment of flow-mediated dilatation independently of age and blood pressure, whereas such relationship was not observed for other MP populations. Similar results have been found in diabetes and obesity. In acute coronary syndromes, increased circulating levels of EMPs correlate with the extent of endothelial dysfunction. EMPs appear as a more robust predictor of the occurrence of myocardial infarction in diabetic patients, when compared to classical markers of endothelial activation. In addition, plasma EMP levels correlate positively with the extent and severity of coronary stenosis at angiography in patients with coronary syndromes. Plasma EMP levels are also increased in patients with pulmonary hypertension where they predict the severity of the disease. Increased EMP plasma levels not only reflect endothelial activation or apoptosis, but they may also increase endothelial dysfunction by impairing endothelium-dependent dilation and the endothelial NO pathway.

Endothelial progenitor cells

Cardiovascular risk factors damage the endothelial monolayer by inducing endothelial cell senescence and apoptosis, leading to endothelial dysfunction. The restoration and reconstitution of the damaged endothelial monolayer may be a prerequisite for the prevention of endothelial dysfunction and atherosclerotic lesion formation. Until recently endothelial cell repair mechanisms were thought to be mediated by the adjacent endothelial cells. However, adult blood vessels regenerate only moderately in adults under physiological conditions. The half-life of an adult endothelial cell has been reported to
be 3.1 years. A growing body of evidence suggest that circulating, bone marrow-derived, endothelial progenitor cells (EPC) play an important role in endothelial cell regeneration. EPC can be measured from peripheral blood either by direct enumeration using flow cytometry (CD34/KDR, CD34/KDR/CD133 positive EPC) or after cultivation of mononuclear cells (early and late outgrowth EPC). Methodology Flow cytometry. Flow cytometry is used to measure circulating EPC within peripheral blood. Most publications use CD34, CD133, and KDR (VEGFR2) as surface markers. The advantages of this technique include its ability to enumerate untouched, naïve cells with a defined phenotype and the identification of specific cell populations in multicolour fluorescence-activated cell sorting analysis. On the other hand, the definition of cells based on surface markers is under heavy debate, while surface markers do not necessarily correlate with cell function. In-vitro assays. In-vitro assays have been widely used to identify EPC. Two major cell populations have been recently described: early and late outgrowth EPC. Early outgrowth EPCs are derived from mononuclear cells and are cultured using EPC differentiation medium. Regarding late outgrowth EPC, there is currently no data available for their role in endothelial function. Reproducibility and repeatability severely depend on the method used. Cell enumeration of rare cells using fluorescence-activated cell sorting analysis is highly dependent on the protocol used and the experience of investigator. A standardized protocol with clinical evaluation has been published. Further details on standardization issues can be found in the online supplemental material.

Clinical applications
Various publications have demonstrated a correlation between EPC, severity of endothelial dysfunction measured either invasively or non-invasively, and outcomes.93,95,96 However, others97,98 have failed to describe a correlation between EPC and endothelial function. All published results are descriptive and no clinical trials are available demonstrating that therapeutic interventions of circulating EPC numbers can improve endothelial function. First hints that stem and progenitor cells may positively influence impaired endothelial function comes from a substudy of the REPAIR-AMI trial demonstrating restoration of microvascular function of the infarct-related artery after bone marrow stem cell transfusion.99 Mobilization therapy using drugs and substances with effects on the number of circulating EPC has shown an improvement of endothelial function.100 A clear causal role has not been established yet. Currently, there is no strong evidence for a clear dependency of EPC numbers (within circulating blood or subcultured EPC) with the extent of endothelial dysfunction. Additionally, the role of EPC as a guide to treatment has not been established yet. In the clinical setting, more and larger clinical studies evaluating EPC and its correlation with endothelial function are needed. Furthermore, large clinical trials are warranted with an interventional approach to enhance the number of circulating EPC in order to establish the role of EPC in improving endothelial function.

Endothelial glycocalyx

The glycocalyx forms a gel-like layer covering the endothelial lining, shielding endothelial cells from direct contact with circulating blood cells (Figure 5). This strategic position already implies its potential role in several crucial balances at the level of the
vessel wall, including the vasoconstrictor–vasodilator, the pro- and anticoagulant, the pro- and anti-inflammatory, as well as the pro- and antioxidative balance. Under physiological conditions, the endothelial glycocalyx preserves the integrity of the vessel wall. It serves as an inert barrier that precludes direct ‘endothelial’ contact and creates a selectively permeable structure contributing to the generation of the osmotic pressure gradient across the vessel wall. The glycocalyx serves as an active reservoir containing major enzymatic systems and their cofactors [lipoprotein lipase (LPL), extracellular superoxide dismutase (ec-SOD), antithrombin III (AT III), anticoagulant heparansulphates and thrombomodulin].101 It has an important role as mechano-transductor, transferring shear stress into shear-dependent endothelial responses; this leads to NO release.102 Damage to the endothelial glycocalyx is associated with influx of lipoproteins, leakage of macromolecules, and adhesion of circulating cells to the endothelium. Concomitantly, loss of glycocalyx may contribute to an imbalance in enzymatic systems such as coagulation and antioxidant defence as well as an impaired NO release.103 As glycosaminoglycan (GAG) synthesis is under direct negative feedback of inflammatory and oxidative stimuli,104 this indicates that a pro-atherogenic environment has a direct impact on both GAG composition as well as glycocalyx dimension. In turn, both a decreased rate and aberrant composition of GAG synthesis may contribute to vascular inflammation and vascular dysfunction.

Methodology

Glycocalyx measurements can be performed using invasive or non-invasive techniques. In the first technique, systemic glycocalyx volume is measured using the glycocalyx permeable tracer Dextran 40 versus a glycocalyx impermeable tracer, fluorescein-
labelled erythrocytes. The calculated difference between the two intravascular volumes that these tracers occupy renders a reasonable estimation of whole-body glycocalyx volume. However, the invasive nature and the time-consuming preparations precludes its use in larger cohorts. Moreover, it is not clear whether this method considers the endothelial glycocalyx as uniformly distributed throughout the vasculature. Nevertheless, this technique may be of use in order to obtain a first indication of systemic glycocalyx dimensions in humans. The second, non-invasive technique uses a semiautomated imaging method to estimate glycocalyx thickness by OPS (Orthogonal Polarization Spectral imaging) or SDF (Sideview Darkfield imaging) at the superficial microvasculature. Glycocalyx limits the proximity of erythrocytes to the capillary endothelial cells; this imaging method uses the erythrocyte–endothelium gap of the capillaries in the image to quantify glycocalyx thickness.

Clinical applications

Controlled inflammatory challenges lead to instantaneous shedding of glycocalyx constituents and leukocyte activation in conjunction with a profound decrease in glycocalyx dimension. Pre-treatment with etanercept, a soluble tumour necrosis factor a receptor, prevented leukocyte activation as well as shedding of glycocalyx compounds. Acute hyperglycaemia results in a perturbation of the endothelial glycocalyx with a concomitant increase in vascular permeability, and changes in glycocalyx biochemistry are associated with carotid intima media thickness, an established marker of cardiovascular disease, in type 1 diabetes mellitus patients. In patients with familial hypercholesterolemia, an inverse relationship between plasma LDL cholesterol levels
and glycocalyx dimensions exists, whereas cholesterol-lowering treatment resulted in partial recovery of glycocalyx.108

Perspectives

The advent of multiple methods allows for a thorough approach to endothelial function. A comparison between these methods should take into account the pathophysiological relevance, validation and reproducibility, ability to predict events in diverse patient groups, ease of use, cost-effectiveness, and, ultimately, the ability to outperform traditional risk assessment tools.109 The aforementioned techniques have a firm theoretical basis and address different facets of endothelial physiology. Older methods have been largely validated in multiple studies/subpopulations and proven useful in the reclassification of risk. Protocols have been largely standardized and this has resulted in reproducible measurements. However, a consensus has yet to be reached for most of the ex-vivo methods. All of the techniques are acceptable to the patient; learning curves and the necessity for special equipment may hamper the adoption of the most elaborate techniques in everyday clinical practice. Finally, the incremental predictive value has been established for all but the most recently developed ones. While no single method should be seen as an overall winner, it is nevertheless clear that they all add up to better prevention and, eventually, reversal of cardiovascular disease. Evaluation of endothelial function appears as an appealing adjunct for risk stratification. However, before its clinical implementation, it is essential that studies will address highly relevant questions, including which groups will benefit the most from such techniques and whether any clinical benefit from a specific therapeutic strategy is mediated through an improvement in endothelial function.
ACKNOWLEDGMENTS

The authors wish to thank the following people (in alphabetical order) for their valuable contribution in authoring the various parts of this statement: Nicolas Amabile, Lysette Broekhuizen, Marietta Charakida, Coralie Guérin, John Kastelein, Guillaume Mahe, Stefano Masi, Carmel McEniery, Hans Mooij, Max Nieuwdorp, Erik Stroes, Alain Tedgui.

The authors also wish to thank Dr Panagiotis Xaplanteris for his close work with the project coordinators and critical revision of the manuscript.
REFERENCES

47. de Jongh RT, Serne EH, IJzerman RG, de Vries G and Stehouwer CD. Impaired mi-
55. Durand S, Tartas M, Bouye P, Koitka A, Saumet JL and Abraham P. Prostaglandins participate in the late phase of the vascular response to acetylcholine iontophoresis in

71. Tsimikas S. In vivo markers of oxidative stress and therapeutic interventions. Am J

73. Wu T, Willett WC, Rifai N, Shai I, Manson JE and Rimm EB. Is plasma oxidized low-density lipoprotein, measured with the widely used antibody 4e6, an independent predictor of coronary heart disease among US. men and women? J Am Coll Cardiol 2006; 48(5): 973–979.

102. Van Teeffelen JW, Brands J, Jansen C, Spaan JA and Vink H. Heparin impairs

Figure 1: Schematic of a Doppler guidewire including an infusion catheter and a 12 MHz Doppler wire. The coaxial position of the wire in the vessel lumen can be appreciated. Also shown are two 1 cm-vessel segments where changes in vessel diameter are measured proximal and distal to the injection site of the vasodilator agent. Source: Exerc Sport Sci Rev © American College of Sports Medicine
Figure 2: Flow mediated dilatation. The top figure illustrates the optimal set-up for FMD measurements. The bottom figures demonstrate brachial artery in a longitudinal section (A) and the output using the automated analysis software (Brachial Analyser) (B).

![Diagram with GTN and SLB](image)

Figure 3: Schema for PWA assessment of endothelial function. SLB = salbutamol

Figure 4: Typical recordings from the EndoPat. Estimation of PAT ratio after correction of the reactive hyperemia index for the control arm. Probe 1 corresponds to the oc-
cluded arm and probe 2 to the control arm. The blue colored interval corresponds to the duration of occlusion in the test arm.

Figure 5: Types of investigation with Laser Doppler flowmetry.

Figure 6: Biomarkers for endothelial functions
Figure 7: Representative flow cytometry experiment aiming at identifying circulating endothelial CD144+ MPs in acute myocardial infarction. A: identification of fluorescent synthetic beads within the MP size range (Blue= 0.5 µm; Green= 0.8 µm and Red= 3 µm in diameter). B: forward scatter (FS) vs. side scatter (SS) dot plot representation showing MPs (black) and synthetic beads. C: Representative flow cytometry fluorescence histogram showing the presence of CD144 (VE-cadherin) on circulating MPs (purple line). The black line corresponds to negative control (isotypic IgGs). Platelet-free plasma was obtained as indicated above and exposed to anti-VE-cadherin monoclonal antibody coupled to phycoerythrin (PE; purple line) or its isotypic control (black line). D: forward scatter (FS) vs. side scatter (SS) dot plot representation showing endothelial CD144+MPs (purple dots) in the platelet-free plasma of a patients with acute myocardial infarction.
Figure 8: Electron microscopy image of coronary endothelial glycocalyx (courtesy of B. van den Berg, Maastricht University).
<table>
<thead>
<tr>
<th>Molecule</th>
<th>Function</th>
<th>Synonym</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14</td>
<td>Receptor/signaling</td>
<td>LPS receptor</td>
<td>Monocytes, macrophages and neutrophils</td>
</tr>
<tr>
<td>CD31</td>
<td>Adhesion</td>
<td>PECAM-1</td>
<td>Very widely distributed</td>
</tr>
<tr>
<td>CD34</td>
<td>Adhesion (precise function unclear)</td>
<td></td>
<td>Leukocytes at various stages of differentiation, especially haemopoietic or endothelial progenitors. Also on numerous neoplastic cells.</td>
</tr>
<tr>
<td>CD45</td>
<td>Signaling</td>
<td>Leukocyte common antigen</td>
<td>‘Mature’ and neoplastic leukocytes</td>
</tr>
<tr>
<td>CD69E</td>
<td>Adhesion</td>
<td>E-selectin</td>
<td>Endothelial cells</td>
</tr>
<tr>
<td>CD105</td>
<td>Signaling</td>
<td>TFG-β receptor/endoglin</td>
<td>Endothelial cells, activated monocytes, pre-B lymphocytes</td>
</tr>
<tr>
<td>CD133</td>
<td>Unclear</td>
<td>Promin-1</td>
<td>Haematopoietic stem cells, endothelial progenitor cells, some neuronal cells</td>
</tr>
<tr>
<td>CD144</td>
<td>Adhesion and signaling</td>
<td>VE-Cadherin</td>
<td>Endothelial cells</td>
</tr>
</tbody>
</table>
naling

CD146 Adhesion Mel-CAM/MUC-18 Mature endothelial cells,

T lymphocytes,

some neoplastic cells.

CD202b Signaling Tie-2 (angiopoietin

receptor) Endothelial cells

CD309 Signaling VEGFR2/KDR/Flk-1 Endothelial cells

Table 1 Cell surface molecules used to define endothelial cells in vivo and in vitro.
<table>
<thead>
<tr>
<th>Name of cell</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angioblast</td>
<td>-</td>
</tr>
<tr>
<td>Blood outgrowth endothelial cell#</td>
<td>BOEC</td>
</tr>
<tr>
<td>Circulating angioblast</td>
<td>-</td>
</tr>
<tr>
<td>Circulating angiogenic cell</td>
<td>CAC*</td>
</tr>
<tr>
<td>Circulating endothelial cell</td>
<td>CEC</td>
</tr>
<tr>
<td>Circulating endothelial progenitor cell</td>
<td>CEPC</td>
</tr>
<tr>
<td>Endothelial cell colony forming unit</td>
<td>CFU-EC*#</td>
</tr>
<tr>
<td>Culture modified mononuclear cells</td>
<td>CMMC*</td>
</tr>
<tr>
<td>Circulating progenitor cell</td>
<td>CPC</td>
</tr>
<tr>
<td>Endothelial cell</td>
<td>EC*#</td>
</tr>
<tr>
<td>Endothelial-like cell</td>
<td>ELC</td>
</tr>
<tr>
<td>Endothelial colony forming cell</td>
<td>ECFC</td>
</tr>
<tr>
<td>Endothelial progenitor cell</td>
<td>EPC*#</td>
</tr>
<tr>
<td>Endothelial outgrowth cell</td>
<td>EOC</td>
</tr>
<tr>
<td>Haemopoietic precursor cell</td>
<td>HPC</td>
</tr>
<tr>
<td>Haemopoietic stem cell</td>
<td>HSC</td>
</tr>
<tr>
<td>Multipotent adult progenitor cell</td>
<td>MAPC</td>
</tr>
</tbody>
</table>

Table 2 Endothelial cells. All of these cells are defined by different but often overlapping markers in vivo and in vitro. *EC-like cells, #EOCs