Promiscuous affairs of PKB/AKT isoforms in metabolism

Schultze, S M; Jensen, J; Hemmings, B A; Tschopp, O; Niessen, M

Abstract: The protein kinase B (PKB) family encompasses three isoforms; PKB (AKT1), PKB (AKT2) and PKB (AKT3). PKB and PKB but not PKB, are prominently expressed in classical insulin-sensitive tissues like liver, muscle and fat. Transgenic mice deficient for PKB, PKB or PKB have been analysed to study the roles of PKB isoforms in metabolic regulation. Until recently, only loss of PKB was reported to result in metabolic disorders, especially insulin resistance, in humans and mice. However, a new study has shown that PKB-deficient mice can show enhanced glucose tolerance accompanied by improved β-cell function and higher insulin sensitivity in adipocytes. These findings prompted us to review the relevant literature on the regulation of glucose metabolism by PKB isoforms in liver, skeletal muscle, adipocytes and pancreas.

DOI: https://doi.org/10.3109/13813455.2010.539236

Posted at the Zurich Open Repository and Archive, University of Zurich

ZORA URL: https://doi.org/10.5167/uzh-56375

Accepted Version

Originally published at:

DOI: https://doi.org/10.3109/13813455.2010.539236
Promiscuous Affairs of PKB/AKT Isoforms in Metabolism

Simon M. Schultze1,2, Jørgen Jensen3,4, Brian A. Hemmings2, Oliver Tschopp1 and Markus Niessen1

1 Endocrinology, Diabetology & Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
2 Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
3 Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien 220, 0806 Oslo, Norway.
4 Department of Sports Science, University of Aarhus, Aarhus, Denmark.

Address for correspondence: M. Niessen, Endocrinology, Diabetology & Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland. Tel. +41-44-255 22 25. Fax: +41-44-255 97 41. E-mail: markus.niessen@usz.ch.
Abstract

The protein kinase B (PKB) family encompasses three isoforms; PKB\(\alpha\) (AKT1), PKB\(\beta\) (AKT2) and PKB\(\gamma\) (AKT3). PKB\(\alpha\) and PKB\(\beta\), but not PKB\(\gamma\), are prominently expressed in classical insulin-sensitive tissues like liver, muscle and fat. Transgenic mice deficient for PKB\(\alpha\), PKB\(\beta\) or PKB\(\gamma\) have been analysed to study the roles of PKB isoforms in metabolic regulation. Until recently, only loss of PKB\(\beta\) was reported to result in metabolic disorders, especially insulin resistance, in humans and mice. However, a new study has shown that PKB\(\alpha\)-deficient mice show enhanced glucose tolerance accompanied by improved \(\beta\)-cell function and higher insulin sensitivity in adipocytes. These findings prompted us to review the relevant literature on the regulation of glucose metabolism by PKB isoforms in liver, skeletal muscle, adipocytes and pancreas.

Keywords: PKB, AKT, redundancy, metabolism, glucose, liver, muscle, fat, pancreas
Introduction

The level of circulating glucose has to be adjusted to variations in food intake and energy demands, which is primarily regulated by the insulin/glucagon system in mammals. Insulin lowers blood glucose by increasing uptake and deposition into muscle and adipose tissue as well as by decreasing its release from the liver. Glucagon mainly acts on hepatocytes where it opposes the action of insulin and stimulates release of glucose into circulation. Insulin signalling targets various cell types in the whole organism and, in addition to its role in metabolism, affects cellular processes such as protein synthesis, proliferation and survival. Therefore a complex network of molecular pathways is required to transduce insulin signalling into cell type-specific and context-dependent responses. Protein kinase B (PKB) has been shown to be a key element in the insulin signal transduction network.

The physiological and tissue-specific effects of the three PKB isoforms have been extensively studied in vitro but most comprehensively in transgenic mice. While \(Pkb\alpha^{-/-} \) and \(Pkb\gamma^{-/-} \) mice show impaired foetal growth and brain development, respectively, glucose homeostasis was found unaffected in both models (Chen et al., 2001, Cho et al., 2001b, Easton et al., 2005, Tschopp et al., 2005, Yang et al., 2003). In contrast, \(Pkb\beta^{-/-} \) mice are insulin resistant, mildly glucose-intolerant and have less adipose tissue. Depending on strain and gender, these mice show either late loss of \(\beta \)-cells followed by development of diabetes and mild growth deficiency, or compensatory increase of \(\beta \)-cell mass without age-dependent progression into overt hyperglycaemia (Cho et al., 2001a, Garofalo et al., 2003). These studies suggested that only PKB\(\beta \) plays a role in regulation of energy homeostasis. This view was recently challenged by a new study (Buzzi et al., 2010) that re-examined in parallel the metabolic phenotype of three mouse strains deficient for Pkb\(\alpha \), \(\beta \) or \(\gamma \), respectively. Here they confirmed that \(Pkb\beta^{-/-} \) mice are insulin resistant with compensatory increase of islet mass and that \(Pkb\gamma^{-/-} \) mice show no metabolic abnormalities. However, \(Pkb\alpha^{-/-} \) mice displayed improved insulin sensitivity, lower blood glucose and higher serum glucagon concentrations. These new findings prompted us to critically review the relevant literature on the metabolic role of PKB isoforms.
Protein Kinase B

The PKB serine/threonine protein kinase family consists of three evolutionary conserved isoforms: PKBα (AKT1), PKBβ (AKT2) and PKBγ (AKT3). PKB was first isolated from transforming murine leukemia virus AKT-8 by Staal et al in 1977, characterized as an oncogene and named akt (Staal et al., 1977). Two human homologues of the viral akt gene were identified later on and termed akt1 and akt2. In 1991, a human serine/threonine kinase was cloned, which was termed related to the A and C kinases (RAC) and subsequently renamed to PKBα/Akt1 ((Jones et al., 1991), reviewed in (Brazil and Hemmings, 2001)). Since the identification of PKBα as a serine/threonine kinase, almost 20 years ago, PKB isoforms were studied intensively and are now considered as major regulators of elementary cellular process, such as proliferation, survival, cell growth and energy metabolism (Bozulic et al., 2008, Contreras-Ferrat et al., 2010, Haga et al., 2005, Heron-Milhavet et al., 2006). Consequently, PKB isoforms play pivotal roles in physiology and their deregulation engenders diseases, such as cancer, neurodegeneration and metabolic disorders (Altomare and Testa, 2005, Zhao and Townsend, 2009). Remarkably, activation of PKB isoforms by gene amplification or mutations in upstream regulators frequently occurs in human cancers (Carpten et al., 2007). The molecular and cellular biology of PKB isoforms has been comprehensively reviewed (Brazil et al., 2002, Hanada et al., 2004, Manning and Cantley, 2007) and is therefore discussed only briefly in this review.

PKBα, PKBβ and PKBγ are encoded by three distinct genes, which are located on different chromosomes. In contrast to many members of other kinase families, PKB isoforms share the same protein structure and are approximately 80% identical at the amino acid level. They carry a N-terminal pleckstrin homology (PH) domain, a catalytic domain and a C-terminal regulatory domain (Hanada et al., 2004). PKBα and PKBβ are ubiquitously expressed, whereas PKBγ expression is restricted to brain, testis, lung, fat, mammary glands and pancreatic islets (Buzzi et al., 2010, Yang et al., 2003). Low expression levels were also observed in skeletal muscle (Brozinick et al., 2003). Notably, expression of PKBα and PKBβ is prominent in
classical insulin target tissues involved in the regulation of systemic energy homeostasis, such as liver, skeletal muscle and fat (Yang et al., 2003).

PKB isoforms are activated by growth factors and cytokines, including PDGF, VEGF, HGF, IGF-1, insulin, TNFα and IL-2 but also by environmental stresses, such as heat shock, hypoxia and oxidative stress (Zhuravleva et al., 2010). Regulation of PKB downstream of these stimuli generally depends on activation of phosphatidylinositol 3-kinase (PI3K) family members, which convert phosphatidylinositol di-phosphate (PIP2) to PIP3 at the plasma membrane. PKB isoforms bind to PIP3 via their PH domain, which facilitates their activation. PKB isoforms are phosphorylated and thereby activated by upstream kinases at two distinct phosphorylation-sites. First, PDK1 phosphorylates PKB isoforms at the catalytic domain (Thr308 in PKBα, Thr309 in PKBβ and Thr305 in PKBγ) which results in basal kinase activity of approximately 10%. In a second step, PKB isoforms are phosphorylated by mTORC2, DNA-PK or ATM at the C-terminal regulatory domain (Ser473 in PKBα, Ser474 in PKBβ and Ser472 in PKBγ), which is essential for full kinase activity. Activation of PKB isoforms is tightly counter-regulated by phosphatases, such as PTEN and SHIP2. These phosphatases inactivate PIP3 by dephosphorylation and thereby prevent plasma membrane translocation and activation of PKB isoforms (Bhaskar and Hay, 2007, Brazil and Hemmings, 2001, Hanada et al., 2004, Zhuravleva et al., 2010).

Activity of PKB isoforms is modulated by different binding partners, such as TRAF6, HSP90, CTMP and TCL1 which affect protein stability, dynamics and duration of activation and rate of kinase activity, respectively (Brazil et al., 2002). Furthermore, recent studies show that activity of PKB isoforms is indirectly modulated by several microRNAs. For instance, miR320 was shown to down-regulate PI3K in adipocytes resulting in inhibition of PKB activation and insulin resistance (Ling et al., 2009). However, it remains to be determined if modulation of PKB activity by binding partners and microRNAs plays a role in insulin signalling and regulation of glucose homeostasis.

Upon activation, PKB isoforms are released from the plasma membrane and phosphorylate various substrates throughout the cell. PKB substrates can specifically regulate a single respective cellular process (e.g. cell survival, Bad or caspase 9), or pleiotropically affect several cellular functions simultaneously, such as Gsk3β and
FoxO transcription factors which can control cell survival, proliferation but also energy metabolism (Manning and Cantley, 2007)

The different phenotypes of \(Pkb\alpha^{-/-}, Pkb\beta^{-/-} \) and \(Pkb\gamma^{-/-} \) mice undoubtedly point to isoform-specific functions. As the expression of PKB isoforms overlaps in many organs, the different phenotypes can not solely be explained by divergent gene expression. There is an emerging number of studies describing isoform-specific functions in cellular processes, such as PKB\(\alpha \) in cancer cell migration (Chin and Toker, 2010), PKB\(\alpha \) in \(\beta \)-cell proliferation and PKB\(\beta \) in glucose uptake. Since PKB isoforms are structurally highly similar, including the kinase domain, it is unlikely that recognition of phosphorylation-motifs underlies substrate-specificity (Manning and Cantley, 2007). Therefore it is considered that substrate-specificity is controlled by cellular localization and specific binding partners. However, until today, functional differences of PKB isoforms at the cellular level are not yet fully characterized and the mechanisms determining substrate-specificity remain largely unknown.

Liver

The liver functions as a critical regulator of glucose homeostasis and the PI3K/PKB pathway co-ordinates hepatic glucose metabolism with the systemic metabolic state. Out of the three PKB isoforms, only PKB\(\alpha \) and PKB\(\beta \), but not PKB\(\gamma \), are expressed in the liver. Studies using transgenic mice have shown, that PKB\(\beta \) accounts for approximately 70% of total PKB protein in the liver and is therefore considered as the major isoform (Dummler et al., 2006). In hepatocytes, PKB\(\alpha \) and PKB\(\beta \) are both activated upon insulin stimulation in a PI3K-dependent manner (Taniguchi et al., 2006).

According to the current model, insulin suppresses hepatic glucose output in several ways, including inhibition of gluconeogenesis and stimulation of glycogen synthesis, which are both dependent on PKB activity (Newgard, 2003). Gluconeogenesis is suppressed after phosphorylation/inhibition of the transcription factor FoxO1, an inducer of gluconeogenic genes \(pepck \) and \(g6pase \) (Taniguchi et al., 2006). In addition, PKB also induces glycogen synthesis by phosphorylating and inhibiting GSK3\(\beta \) (Lawrence and Roach, 1997). Although it was shown that PKB\(\beta \) (He et al.,
2010, Leavens et al., 2009) plays a critical role in these processes, the effects of endogenous PKBα remain unclear. Furthermore, it was proposed that hepatic de novo lipogenesis is mainly regulated by PKCλ/ζ, as expression of lipogenic genes, such as srebp-1c, is depended on PKCλ/ζ activity (Taniguchi et al., 2006). Even so, several studies show that PKBα and PKBβ promote hepatic de novo lipogenesis as well (He et al., 2010, Leavens et al., 2009, Ono et al., 2003).

The role of PKB activity in hepatic metabolism and its effects on systemic energy homeostasis was studied in mice with liver-specific deletions of major regulatory subunits of PI3K (pik3r1−il/pik3r2−il) and PTEN (pten−il) (Horie et al., 2004, Stiles et al., 2004, Taniguchi et al., 2006). Insulin-stimulated activation of PKBα, PKBβ and PKCλ/ζ was almost completely abrogated in pik3r1−il/pik3r2−il mice. Concomitantly, insulin also failed to downregulate hepatic gluconeogenesis and could no longer inhibit GSK3β and induce expression of lipogenic genes. As a consequence, pik3r1−il/pik3r2−il mice exhibited insulin resistance, hyperglycemia, hyperinsulinaemia and were glucose intolerant (Taniguchi et al., 2006). Remarkably, expression of gluconeogenic genes, pepck and g6pase was efficiently blocked after overexpression of constitutive active PKBα (myr-PKBα) whereas expression of lipogenic genes, srebp-1c, could only be restored by overexpression of constitutive active PKCλ/ζ (Taniguchi et al., 2006). On the other hand, gluconeogenic genes were down regulated and phosphorylation of GSK3β and lipogenesis were enhanced in liver of pten−il mice, most likely due to hyper-activated PKBα, PKBβ and PKCλ/ζ. As a result, pten−il mice were found to be hypoglycaemic, hypoinsulinaemic, showed increased glucose tolerance and, most strikingly, developed hepatic steatosis with all characteristics of human non-alcoholic fatty liver disease (Horie et al., 2004, Stiles et al., 2004).

In recent studies the role PKBβ in hepatic lipid accumulation was examined using different mouse models of hepatic steatosis (He et al., 2010, Leavens et al., 2009). Remarkably, whole-body deletion of pkbβ in pten−il, leptin-deficient (lepob/ob) and mice on high-fat diet (HFD) as well as liver-specific deletion of pkbβ in lepob/ob and mice on HFD significantly reduced lipid accumulation in hepatocytes. PKBβ-deficiency reduced expression of lipogenic genes and de novo lipogenesis, indicating that PKBβ is required for lipid accumulation in hepatocytes.
Interestingly, \(pkb/\beta \)-deficiency had more pronounced effects in wildtype controls compared to \(pten^{-/-} \) mice. Therefore, increased activation of PKB\(\alpha \), and possibly also of PKC\(\lambda/\zeta \), might compensate for loss of PKB\(\beta \) in hepatocytes. Indeed ectopic expression of constitutively active PKB\(\alpha \) (myr-PKB\(\alpha \)) in the liver induced hypoglycemia and hepatic steatosis, further supporting the notion for functional overlap between PKB\(\alpha \) and PKB\(\beta \) in hepatocytes (Ono et al., 2003). However, activation of PKB isoforms by myristilation is rather artificial, and might induce non-physiological functions.

Notably, hepatic lipid content, but not de novo lipogenesis or expression of lipogenic genes, were reduced in PKB\(\beta \)-deficient mice fed a specific HFD (Surwit diet, (Leavens et al., 2009)). Moreover, expression of myr-PKB\(\alpha \) upregulated srebp-1c in wildtype but not pik3r1\(^{-/-} \)/pik3r2\(^{-/-} \) mice and additionally promoted accumulation of hepatic lipids independent of srebp-1c (Ono et al., 2003, Taniguchi et al., 2006). These observations suggest that PKB\(\alpha \) and PKB\(\beta \) regulate other processes in addition and that reduced lipogenesis could be a secondary effect dependent on PI3K/PKC.

Skeletal muscle.

Skeletal muscle is a specialised tissue that makes movement possible by transforming chemical energy into mechanical force. In addition, skeletal muscle is also central to metabolic regulation and 70-90% of glucose disposal during a hyperinsulinemic euglycaemic clamp occurs in this tissue (DeFronzo et al., 1981). Glucose taken up is mainly incorporated into glycogen (Shulman et al., 1990) and the majority (≈80%) of carbohydrates stored in humans are found in skeletal muscle (Jensen and Lai, 2009).

It is the generally accepted view that insulin activates PKB via class 1A PI3K (Shepherd, 2005). Although this has not been conclusively shown in fully differentiated skeletal muscle, all available data support the view that PKB promotes insulin-stimulated glucose uptake and glycogen synthase activation (Cleasby et al., 2007). Like in adipose tissue, glucose uptake is increased in skeletal muscle by triggering translocation of GLUT4 from intracellular vesicles to the plasma
membrane, which depends on well studied signalling events downstream of the insulin receptor involving IRS, PKB and AS160. Skeletal muscle expresses all three PKB isoforms (Brozinick et al., 2003, Turinsky and Damrau-Abney, 1999) but only deletion of PKBβ causes insulin resistance and reduces insulin-stimulated glucose uptake (Cho et al., 2001a, Garofalo et al., 2003), indicating that PKBβ is required for this process. However, since high concentrations of insulin could still increase glucose disposal into muscle lacking PKBβ other signalling components might also be able to regulate GLUT4 translocation downstream of insulin. Indeed, overexpression of constitutively active PKBα increases glucose uptake in L6 muscle cells (Hajduch et al., 1998) suggesting that PKBα and PKBβ can both regulate translocation of GLUT4 to the plasma membrane. This finding is in line with the observation that insulin can activate all three isoforms of PKB in skeletal muscle (Brennesvik et al., 2005, Brozinick et al., 2003). Isoform-specific function has been investigated in several studies. Ectopic expression of constitutively active PKBα or PKBβ in vivo in rat muscle fibres increased glycogen accumulation, but only expression of PKBβ increased basal glucose uptake (Cleasby et al., 2007). However, only PKBα increased glycogen synthase kinase-3beta (GSK3β) phosphorylation. Knockdown of PKBβ in fully differentiated muscle fibres by electrotransfer of short hairpin (sh-) RNAs decreased insulin-stimulated glucose uptake suggesting isoform-specificity of PKB in regulation of glucose metabolism (Cleasby et al., 2007). Unfortunately, the role PKBα was not addressed in this study. Interestingly, Brozinick et al. (Brozinick et al., 2003) found that insulin-stimulated PKBβ activation was reduced in insulin resistant muscles whereas insulin-stimulated activation of PKBα and PKBγ occurred normally. Evidence for isoform-specific signalling was provided by Bouzakri et al (Bouzakri et al., 2006). These authors could show that activation of PKBβ via IRS1 stimulates glucose uptake whereas IRS2-mediated activation of PKBα increases lipid synthesis.

Besides insulin, muscle contraction can also induce glucose uptake. Contraction-induced glucose transport depends on increased translocation of GLUT4 but the underlying mechanism depends on AMPK and not on PI3K. However, contraction can increase PKB phosphorylation and activity (Sakamoto et al., 2003, Whitehead et al., 2000), but contraction-mediated PKB phosphorylation remains below 10% of insulin-stimulated PKB phosphorylation (Whitehead et al., 2000). Contraction
increases activity of all isoforms, but PKBα activation is most pronounced (Sakamoto et al., 2002). The notion that PKB does not mediate contraction-stimulated glucose uptake is in line with the fact that the PI3K inhibitor wortmannin does not inhibit contraction-stimulated glucose uptake (Whitehead et al., 2000). Accordingly, contraction-stimulated glucose transport is normal in skeletal muscle of PKBβ-deficient mice (Sakamoto et al., 2006). Interestingly, contraction can block insulin-stimulated class 1A PI3K activity without reducing insulin-stimulated PKB activation (Whitehead et al., 2000) indicating, that PKB phosphorylation might occur without increase in class 1A PI3K activity. This observation highlights the need to clarify which isoform(s) of PI3K mediate insulin-stimulated glucose uptake in skeletal muscle.

Adipose tissue

Insulin induces phosphorylation of PKB in adipocytes. Like in muscle and liver, the level of phosphorylation/activation of PKB after insulin stimulation is often regarded as benchmark for insulin sensitivity. This consensus is based on observations, that insulin resistance in adipose tissue is in many cases associated with less insulin-induced phosphorylation of PKB and that increased or constitutive activation of PKB can increase or mimic insulin action, respectively. Many lines of evidence suggest, that mainly PKBβ is required downstream of insulin in adipocytes. For example, transient downregulation of PKBβ using siRNAs inhibits insulin-induced GLUT4 translocation to the plasma membrane of 3T3-L1 adipocytes whereas knockdown of PKBα did not result in any differences (Jiang et al., 2003, Katome et al., 2003). These findings are in line with the observation that Pkbβ−/− mice are insulin resistant whereas Pkbα−/− mice are normal or even more insulin sensitive (Buzzi et al., 2010, Chen et al., 2001, Cho et al., 2001a, Cho et al., 2001b, Garofalo et al., 2003, Yang et al., 2003). However, not all metabolic functions regulated by insulin in adipocytes might be dependent on PKBβ alone, as described by Katome et al. (Katome et al., 2003). These authors analysed 2-DG uptake and glycogen synthesis in 3T3-L1 adipocytes after downregulation of PKBα, β or γ and found that PKBα and PKBβ contributed to insulin-stimulated glycogen synthesis to about the same extent while 2-DG uptake only depended on PKBβ. Accordingly, insulin appears to stimulate the
association of PKBβ with GLUT4-containing vesicles in rat adipocytes (Calera et al., 1998) and overexpression of PKBβ, but not PKBα, rescues impaired glucose transport in PKBβ-deficient adipocytes (Bae et al., 2003). How isoform-specificity might be achieved in adipocytes was studied by Gonzales and McGraw (Gonzalez and McGraw, 2009). These authors found that insulin activates both PKBα and PKBβ in adipocytes, but describe differential subcellular distribution of these two isoforms upon stimulation. While basally adipocytes had similar levels of PKBα and PKBβ at the plasma membrane, a significantly greater fraction of PKBβ accumulated at the plasma membrane after stimulation with insulin. The question if PKB plays a role in lipogenesis has received surprisingly little attention. However, Berggreen and colleagues (Berggreen et al., 2009) recently described that inhibition of PKB in 3T3-L1 adipocytes with an inhibitor called Akti reduced de novo and insulin-dependent lipid synthesis and that insulin failed to regulate the rate-limiting lipogenic enzyme acetyl-CoA carboxylase (ACC) when PKB was inhibited. Specific roles for the different isoforms of PKB were not described in this study.

Interestingly, there is a small but noteworthy number of studies with conflicting results. For example, Kitamura et al. (Kitamura et al., 1998) expressed a dominant-negative PKB isoform (Akt-AA) in 3T3-L1 adipocytes. This isoform contains two alanines instead of the two regulated phosphorylation sites (Thr308 and Ser473) and its expression reduced activation of PKB by about 80-95%. Expression of Akt-AA inhibited insulin-dependent protein synthesis without affecting glucose transport indicating, that PKB might only be required for some but not all effects of insulin in adipocytes. Similarly, Guilherme and Czech (Guilherme and Czech, 1998) presented evidence that the formation of IRS1/PI3K complexes and Akt/PKB activation are insufficient to stimulate glucose transport in rat adipocytes. At least two more recent studies also describe that insulin-dependent activation of PKB does not necessarily correlate with insulin-induced 2-DG transport (Hoehn et al., 2008, Xu et al., 2010). Finally, Buzzi et al. (Buzzi et al., 2010) found that primary adipocytes isolated from Pkbaα-deficient mice show higher insulin-induced glucose incorporation than adipocytes from wild type littermates.

Pancreatic islets
To properly regulate blood glucose homeostasis, islet mass and function must be coordinated with metabolic demand. Plasticity of islet mass is achieved by integration of a complex signal environment comprised of nutrients, hormones, and cytokines that control the balance between apoptosis and cell growth/proliferation (Maedler, 2008, Niessen, 2006). Because PKB is a global regulator of growth, proliferation and apoptosis, it has been implicated to play a major role in modulating plasticity of islet mass downstream of insulin receptor substrate 2 (IRS2) (Elghazi et al., 2007, Hennige et al., 2003, Kubota et al., 2000, Lingohr et al., 2003, Mohanty et al., 2005, Park et al., 2006, Takamoto et al., 2008, Withers et al., 1998, Wrede et al., 2002). Yet, a number of studies addressing this issue yielded somewhat unexpected results. \textit{Pkb}\textalpha-deficient mice show impaired placental development and foetal growth (Buzzi et al., 2010, Chen et al., 2001, Tuttle et al., 2001, Yang et al., 2003) but normal islet growth and function. \textit{pkb}\textbeta-deficient mice show impaired overall growth but display, dependent on strain and sex, even compensatory increase in \textbeta-cell mass (Buzzi et al., 2010, Cho et al., 2001a, Garofalo et al., 2003). Finally, \textit{pkb}\textgamma-deficient mice display reduction in brain size without any distortions of islet function or mass (Buzzi et al., 2010, Easton et al., 2005, Tschopp et al., 2005). In another study \textbeta-cell-specific loss of function for PKB was induced by expression of a kinase-dead dominant-negative form of PKB\textalpha (rip-kd\textit{kpb}), however, only defective insulin secretion but no reduction in islet size was observed (Bernal-Mizrachi et al., 2004). Since the dominant-negative form antagonizes all three isoforms this latter finding makes compensation between isoforms an unlikely explanation for the normal islet phenotypes of PKB-deficient mice. In contrast to the loss of function phenotype, ectopic expression of constitutively active PKB\textalpha under the control of the rat insulin promoter (rip) (Bernal-Mizrachi et al., 2001, Tuttle et al., 2001) resulted in hypertrophy and hyperplasia of islets. Such mice were hyperinsulinaemic and resistant to streptozotocin-induced diabetes. Taken together the results from these mouse models suggest that although none of the PKB isoforms is required for maintenance of islet mass, constitutive activation of at least PKB\textalpha is sufficient to increase islet size. In order to reconcile these observations it was proposed (Niessen, 2006) that maintenance and compensatory expansion of islet mass (as observed in insulin resistance) do not depend on the same signal transduction pathways downstream of IRS2. This model predicts that PKB is only required for expansion but not for maintenance of islet mass. Which of the three PKB isoforms is/are required to
regulate islets mass was studied recently by Buzzi et al. (Buzzi et al., 2010). This study shows that only PKBα, but not PKBβ or γ, is specifically activated downstream of IRS2 in β-cells. Furthermore, adenoviral overexpression of PKBα increased proliferation of β-cells while overexpression of the remaining two isoforms was ineffective, indicating that PKBα is in control of the regulation of β-cell mass.

Perspectives and conclusions

Insulin sensitivity manifests at the signalling level and at the level of cellular function. Since the insulin receptor is present on many, if not all, mammalian cells the biological function of insulin is cell type-specific, and, within a given cell type, insulin often controls more than one cellular process. For example, insulin induces GLUT4-dependent transport and deposition of glucose into fat. It also inhibits lipolysis. The analysis of any of these endpoints after stimulation with insulin allows unambiguous determination of how insulin sensitive the target cell is for the respective function. It has become common practice in the field to correlate insulin-induced cellular effects with intra-cellular insulin signal transduction, however, insulin sensitivity at the signalling level is not easy to measure because the insulin receptor connects to an intricate and highly context-specific intra-cellular network of signalling molecules. In practice insulin-dependent activation of few protein kinases within this network is usually correlated with specific insulin-induced cellular responses. PKB is regarded as most important mediator of metabolic insulin action and its activation is often monitored by using phospho-specific antibodies in combination with Western blotting. However, as described in this review, insulin signalling might branch at the level of PKB isoforms to control different aspects of metabolic regulation but in most of the cases, the possibility for non-redundant roles of PKB isoforms is not taken into consideration. Technically, due to high conservation of the aminoacid sequence surrounding the phosphorylated Ser and Thr residues in the three isoforms, none of the available phospho-specific antibodies can be used to determine which isoform(s) is(are) activated without prior isoform-specific immunoprecipitation. As more and more evidence for specific and possibly even opposing roles of PKB isoforms accumulates it appears justified to reconsider the appropriateness of detecting PKB phosphophorylation to assess overall insulin sensitivity without consideration of the specific isoform.
Acknowledgements

JJ was supported by the Novo Nordisk Research Foundation, MN by the Takeda Foundation, O.T. by the Gebert Rüf Stiftung (GRS-027/06), and SMS and OT by the Swiss SystemsX.ch initiative LiverX of the Competence Center for Systems Physiology and Metabolic Diseases. The FMI is part of the Novartis Research Foundation. JJ and MN are supported via participation in COST Action BM0602.
Declaration of interest

The authors report no declarations of interest.
References

