Header

UZH-Logo

Maintenance Infos

Autism associated with low 5-hydroxyindolacetic acid in CSF and the heterozygous SLC6A4 gene Gly56Ala plus 5-HTTLPR L/L promoter variants


Adamsen, D; Meili, D; Blau, N; Thöny, B; Ramaekers, V (2011). Autism associated with low 5-hydroxyindolacetic acid in CSF and the heterozygous SLC6A4 gene Gly56Ala plus 5-HTTLPR L/L promoter variants. Molecular Genetics and Metabolism, 102(3):368-373.

Abstract

The known Gly56Ala mutation in the serotonin transporter SERT (or 5-HTT), encoded by the SLC6A4 gene, causes increased serotonin reuptake and has been associated with autism and rigid-compulsive behavior. We report a patient with macrocephaly from birth, followed by hypotonia, developmental delay, ataxia and a diagnosis of atypical autism (PDD-NOS) in retrospect at the age of 4½years. Low levels of the serotonin end-metabolite 5-hydroxyindolacetic acid (5HIAA) in CSF were detected, and SLC6A4 gene analysis revealed the heterozygous Gly56Ala alteration and the homozygous 5-HTTLPR L/L promoter variant. These changes are reported to be responsible for elevated SERT activity and expression, suggesting that these alterations were responsible in our patient for low serotonin turnover in the central nervous system (CNS). Daily treatment with 5-hydroxytryptophan (and carbidopa) led to clinical improvement and normalization of 5HIAA, implying that brain serotonin turnover normalized. We speculate that the mutated 56Ala SERT transporter with elevated expression and basal activity for serotonin re-uptake is accompanied with serotonin accumulation within pre-synaptic axons and their vesicles in the CNS, resulting in a steady-state of lowered serotonin turnover and degradation by monoamine-oxidase (MAO) enzymes in pre-synaptic or neighboring cells.

Abstract

The known Gly56Ala mutation in the serotonin transporter SERT (or 5-HTT), encoded by the SLC6A4 gene, causes increased serotonin reuptake and has been associated with autism and rigid-compulsive behavior. We report a patient with macrocephaly from birth, followed by hypotonia, developmental delay, ataxia and a diagnosis of atypical autism (PDD-NOS) in retrospect at the age of 4½years. Low levels of the serotonin end-metabolite 5-hydroxyindolacetic acid (5HIAA) in CSF were detected, and SLC6A4 gene analysis revealed the heterozygous Gly56Ala alteration and the homozygous 5-HTTLPR L/L promoter variant. These changes are reported to be responsible for elevated SERT activity and expression, suggesting that these alterations were responsible in our patient for low serotonin turnover in the central nervous system (CNS). Daily treatment with 5-hydroxytryptophan (and carbidopa) led to clinical improvement and normalization of 5HIAA, implying that brain serotonin turnover normalized. We speculate that the mutated 56Ala SERT transporter with elevated expression and basal activity for serotonin re-uptake is accompanied with serotonin accumulation within pre-synaptic axons and their vesicles in the CNS, resulting in a steady-state of lowered serotonin turnover and degradation by monoamine-oxidase (MAO) enzymes in pre-synaptic or neighboring cells.

Statistics

Citations

13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 26 Feb 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:26 Feb 2012 11:29
Last Modified:05 Apr 2016 15:29
Publisher:Elsevier
ISSN:1096-7192
Publisher DOI:https://doi.org/10.1016/j.ymgme.2010.11.162
PubMed ID:21183371

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 534kB
View at publisher