Header

UZH-Logo

Maintenance Infos

Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI


Treier, Reto; Steingoetter, Andreas; Fried, Michael; Schwizer, Werner; Boesiger, Peter (2007). Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magnetic Resonance in Medicine, 57(3):568-576.

Abstract

Fast T(1) mapping techniques are a valuable means of quantitatively assessing the distribution and dynamics of intravenously or orally applied paramagnetic contrast agents (CAs) by noninvasive imaging. In this study a fast T(1) mapping technique based on the variable flip angle (VFA) approach was optimized for accurate T(1) quantification in abdominal contrast-enhanced (CE) MRI. Optimization methods were developed to maximize the signal-to-noise ratio (SNR) and ensure effective RF and gradient spoiling, as well as a steady state, for a defined T(1) range of 100-800 ms and a limited acquisition time. We corrected B(1) field inhomogeneities by performing an additional measurement using an optimized fast B(1) mapping technique. High-precision in vitro and abdominal in vivo T(1) maps were successfully generated at a voxel size of 2.8 x 2.8 x 15 mm(3) and a temporal resolution of 2.3 s per T(1) map on 1.5T and 3T MRI systems. The application of the proposed fast T(1) mapping technique in abdominal CE-MRI enables noninvasive quantification of abdominal tissue perfusion and vascular permeability, and offers the possibility of quantitatively assessing dilution, distribution, and mixing processes of labeled solutions or drugs in the gastrointestinal tract.

Abstract

Fast T(1) mapping techniques are a valuable means of quantitatively assessing the distribution and dynamics of intravenously or orally applied paramagnetic contrast agents (CAs) by noninvasive imaging. In this study a fast T(1) mapping technique based on the variable flip angle (VFA) approach was optimized for accurate T(1) quantification in abdominal contrast-enhanced (CE) MRI. Optimization methods were developed to maximize the signal-to-noise ratio (SNR) and ensure effective RF and gradient spoiling, as well as a steady state, for a defined T(1) range of 100-800 ms and a limited acquisition time. We corrected B(1) field inhomogeneities by performing an additional measurement using an optimized fast B(1) mapping technique. High-precision in vitro and abdominal in vivo T(1) maps were successfully generated at a voxel size of 2.8 x 2.8 x 15 mm(3) and a temporal resolution of 2.3 s per T(1) map on 1.5T and 3T MRI systems. The application of the proposed fast T(1) mapping technique in abdominal CE-MRI enables noninvasive quantification of abdominal tissue perfusion and vascular permeability, and offers the possibility of quantitatively assessing dilution, distribution, and mixing processes of labeled solutions or drugs in the gastrointestinal tract.

Statistics

Citations

75 citations in Web of Science®
75 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Mar 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2007
Deposited On:19 Mar 2014 13:14
Last Modified:05 Apr 2016 15:35
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.21177
PubMed ID:17326175

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 447kB
View at publisher