Header

UZH-Logo

Maintenance Infos

The alignment of the CMS silicon tracker


CMS Collaboration; Aguiló, E (2011). The alignment of the CMS silicon tracker. Nuclear Physics B - Proceedings Supplements, 215(1):104-106.

Abstract

The complex system of the CMS all-silicon Tracker, with 15148 silicon strips and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. We present results of the alignment of the full Tracker, in its final position, used for the reconstruction of the first collisions recorded by the CMS experiment. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. The geometry has been systematically monitored in the different periods of operation of the CMS detector. The results have been validated by several data-driven studies (laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation.

Abstract

The complex system of the CMS all-silicon Tracker, with 15148 silicon strips and 1440 silicon pixel modules, requires sophisticated alignment procedures. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micrometers. We present results of the alignment of the full Tracker, in its final position, used for the reconstruction of the first collisions recorded by the CMS experiment. The aligned geometry is based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment, both with cosmic rays and with the first proton-proton collisions. The geometry has been systematically monitored in the different periods of operation of the CMS detector. The results have been validated by several data-driven studies (laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution) and compared with predictions obtained from a detailed detector simulation.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2011
Deposited On:12 Feb 2012 14:17
Last Modified:07 Dec 2017 12:31
Publisher:Elsevier
ISSN:0920-5632 (P) 1873-3832 (E)
Publisher DOI:https://doi.org/10.1016/j.nuclphysbps.2011.03.148

Download

Full text not available from this repository.
View at publisher