Header

UZH-Logo

Maintenance Infos

Automated time-lapse ERT for improved process analysis and monitoring of frozen ground


Hilbich, C; Fuss, C; Hauck, C (2011). Automated time-lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost and Periglacial Processes, 22(4):306-319.

Abstract

A new automated electrical resistivity tomography (A-ERT) system is described that allows continuous measurements of the electrical resistivity distribution in high-mountain or polar terrain. The advantages of continuous resistivity monitoring, as opposed to single measurements at irregular time intervals, are illustrated using the permafrost monitoring station at the Schilthorn, Swiss Alps. Data processing was adjusted to permit automated time-effective handling and quality assessment of the large number of 2D electrical resistivity profiles generated. Results from a one-year dataset show small temporal changes during periods with snow cover, and the largest changes during snowmelt in early summer and during freezing in autumn, which are in phase with changes in either near-surface soil moisture or subsurface temperature. During the snowmelt period, spatially variable infiltration processes were observed, leading to a rapid increase in soil moisture and corresponding decrease in electrical resistivity over a period of a few days. This infiltration led to the onset of active-layer thawing long before the seasonal snow cover vanished. Statistical analyses showed that both spatial and temporal variability over the course of one year are similar, indicating the significance of spatial heterogeneity regarding active-layer dynamics. As a result of its cost-effective ability to monitor freezing and thawing processes even at greater depths, the new A-ERT system can be widely applied in permafrost regions, especially in the context of long-term degradation processes.

Abstract

A new automated electrical resistivity tomography (A-ERT) system is described that allows continuous measurements of the electrical resistivity distribution in high-mountain or polar terrain. The advantages of continuous resistivity monitoring, as opposed to single measurements at irregular time intervals, are illustrated using the permafrost monitoring station at the Schilthorn, Swiss Alps. Data processing was adjusted to permit automated time-effective handling and quality assessment of the large number of 2D electrical resistivity profiles generated. Results from a one-year dataset show small temporal changes during periods with snow cover, and the largest changes during snowmelt in early summer and during freezing in autumn, which are in phase with changes in either near-surface soil moisture or subsurface temperature. During the snowmelt period, spatially variable infiltration processes were observed, leading to a rapid increase in soil moisture and corresponding decrease in electrical resistivity over a period of a few days. This infiltration led to the onset of active-layer thawing long before the seasonal snow cover vanished. Statistical analyses showed that both spatial and temporal variability over the course of one year are similar, indicating the significance of spatial heterogeneity regarding active-layer dynamics. As a result of its cost-effective ability to monitor freezing and thawing processes even at greater depths, the new A-ERT system can be widely applied in permafrost regions, especially in the context of long-term degradation processes.

Statistics

Citations

20 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Mar 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:25 October 2011
Deposited On:05 Mar 2012 13:00
Last Modified:05 Apr 2016 15:36
Publisher:Wiley
ISSN:1045-6740 (P) 1099-1530 (E)
Publisher DOI:https://doi.org/10.1002/ppp.732

Download

Preview Icon on Download
Content: Published Version
Language: English
Filetype: PDF - Registered users only
Size: 973kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations