Header

UZH-Logo

Maintenance Infos

The effect of low-dose continuous erythropoietin receptor activator in an experimental model of acute Cyclosporine A induced renal injury


Meerwein, C; Korom, S; Arni, S; Inci, I; Weder, W; Jungraithmayr, W (2011). The effect of low-dose continuous erythropoietin receptor activator in an experimental model of acute Cyclosporine A induced renal injury. European Journal of Pharmacology, 671(1-3):113-119.

Abstract

The use of Cyclosporine A (CsA) as rejection prophylaxis following organ transplantation is limited by its nephrotoxicity. CsA induces renal damage that is associated with tubulo-interstitial injury and parenchymal sequestration of macrophages, perpetuating pro-inflammatory processes. Furthermore, CsA exerts a diabetogenic effect by damaging pancreatic islet cell integrity. Continuous Erythropoietin Receptor Activator (CERA) was shown to mediate tissue-protective and anti-inflammatory effects in various settings of organ injury. Here, we investigated the effect of low dose CERA in a model of CsA-induced renal and pancreatic injury. Rats were exposed to medium-dose CsA for 28 days. Low-dose CERA was given to the treatment group (CERA) (n=6) once per week vs. a CsA-treated control group (CONTROL) (n=6). The effect of CERA on renal and pancreatic injuries was analyzed by organ function, histology, immunohistochemistry (CD68(+)-macrophages, insulin), ELISA (TGF-β1) and RT-PCR (TGF-β1, Osteopontin, IL-10). CsA induced functional kidney damage. Low dose CERA did not lead to improved kidney function in the treatment group. However, low dose CERA showed a trend toward upregulation of osteopontin accompanied by increased renal macrophage-infiltration and enhanced parenchymal TGF-β1 and IL-10 when compared to controls. Moreover, CERA treated animals showed amelioration of pancreatic islet cell injury. In this model of acute CsA-mediated renal injury, low dose CERA administration was associated with anti-inflammatory effects and preservation of pancreatic islet cell viability.

Abstract

The use of Cyclosporine A (CsA) as rejection prophylaxis following organ transplantation is limited by its nephrotoxicity. CsA induces renal damage that is associated with tubulo-interstitial injury and parenchymal sequestration of macrophages, perpetuating pro-inflammatory processes. Furthermore, CsA exerts a diabetogenic effect by damaging pancreatic islet cell integrity. Continuous Erythropoietin Receptor Activator (CERA) was shown to mediate tissue-protective and anti-inflammatory effects in various settings of organ injury. Here, we investigated the effect of low dose CERA in a model of CsA-induced renal and pancreatic injury. Rats were exposed to medium-dose CsA for 28 days. Low-dose CERA was given to the treatment group (CERA) (n=6) once per week vs. a CsA-treated control group (CONTROL) (n=6). The effect of CERA on renal and pancreatic injuries was analyzed by organ function, histology, immunohistochemistry (CD68(+)-macrophages, insulin), ELISA (TGF-β1) and RT-PCR (TGF-β1, Osteopontin, IL-10). CsA induced functional kidney damage. Low dose CERA did not lead to improved kidney function in the treatment group. However, low dose CERA showed a trend toward upregulation of osteopontin accompanied by increased renal macrophage-infiltration and enhanced parenchymal TGF-β1 and IL-10 when compared to controls. Moreover, CERA treated animals showed amelioration of pancreatic islet cell injury. In this model of acute CsA-mediated renal injury, low dose CERA administration was associated with anti-inflammatory effects and preservation of pancreatic islet cell viability.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:December 2011
Deposited On:25 Feb 2012 16:01
Last Modified:05 Apr 2016 15:39
Publisher:Elsevier
ISSN:0014-2999
Publisher DOI:https://doi.org/10.1016/j.ejphar.2011.09.166
PubMed ID:21968143

Download

Full text not available from this repository.
View at publisher