Header

UZH-Logo

Maintenance Infos

BEL/Pao retrotransposons in metazoan genomes


de la Chaux, N; Wagner, A (2011). BEL/Pao retrotransposons in metazoan genomes. BMC Evolutionary Biology, 11:154.

Abstract

Background Long terminal repeat (LTR) retrotransposons are a widespread kind of transposable element present in eukaryotic genomes. They are a major factor in genome evolution due to their ability to create large scale mutations and genome rearrangements. Compared to other transposable elements, little attention has been paid to elements belonging to the metazoan BEL/Pao subclass of LTR retrotransposons. No comprehensive characterization of these elements is available so far. The aim of this study was to describe all BEL/Pao elements in a set of 62 sequenced metazoan genomes, and to analyze their phylogenetic relationship. Results We identified a total of 7,861 BEL/Pao elements in 53 of our 62 study genomes. We identified BEL/Pao elements in 20 genomes where such elements had not been found so far. Our analysis shows that BEL/Pao elements are the second-most abundant class of LTR retrotransposons in the genomes we study, more abundant than Ty1/Copia elements, and second only to Ty3/Gypsy elements. They occur in multiple phyla, including basal metazoan phyla, suggesting that BEL/Pao elements arose early in animal evolution. We confirm findings from previous studies that BEL/Pao elements do not occur in mammals. The elements we found can be grouped into more than 1725 families, 1623 of which are new, previously unknown families. These families fall into seven superfamilies, only five of which have been characterized so far. One new superfamily is a major subdivision of the Pao superfamily which we propose to call Dan, because it is restricted to the genome of the zebrafish Danio rerio. The other new superfamily comprises 83 elements and is restricted to lower aquatic eumetazoans. We propose to call this superfamily Flow. BEL/Pao elements do not show any signs of recent horizontal gene transfer between distantly related species. Conclusions In sum, our analysis identifies thousands of new BEL/Pao elements and provides new insights into their distribution, abundance, and evolution.

Abstract

Background Long terminal repeat (LTR) retrotransposons are a widespread kind of transposable element present in eukaryotic genomes. They are a major factor in genome evolution due to their ability to create large scale mutations and genome rearrangements. Compared to other transposable elements, little attention has been paid to elements belonging to the metazoan BEL/Pao subclass of LTR retrotransposons. No comprehensive characterization of these elements is available so far. The aim of this study was to describe all BEL/Pao elements in a set of 62 sequenced metazoan genomes, and to analyze their phylogenetic relationship. Results We identified a total of 7,861 BEL/Pao elements in 53 of our 62 study genomes. We identified BEL/Pao elements in 20 genomes where such elements had not been found so far. Our analysis shows that BEL/Pao elements are the second-most abundant class of LTR retrotransposons in the genomes we study, more abundant than Ty1/Copia elements, and second only to Ty3/Gypsy elements. They occur in multiple phyla, including basal metazoan phyla, suggesting that BEL/Pao elements arose early in animal evolution. We confirm findings from previous studies that BEL/Pao elements do not occur in mammals. The elements we found can be grouped into more than 1725 families, 1623 of which are new, previously unknown families. These families fall into seven superfamilies, only five of which have been characterized so far. One new superfamily is a major subdivision of the Pao superfamily which we propose to call Dan, because it is restricted to the genome of the zebrafish Danio rerio. The other new superfamily comprises 83 elements and is restricted to lower aquatic eumetazoans. We propose to call this superfamily Flow. BEL/Pao elements do not show any signs of recent horizontal gene transfer between distantly related species. Conclusions In sum, our analysis identifies thousands of new BEL/Pao elements and provides new insights into their distribution, abundance, and evolution.

Statistics

Citations

15 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

69 downloads since deposited on 08 Mar 2012
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:4 June 2011
Deposited On:08 Mar 2012 13:52
Last Modified:21 Aug 2017 15:30
Publisher:BioMed Central
ISSN:1471-2148
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2148-11-154
PubMed ID:21639932

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 798kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)