Header

UZH-Logo

Maintenance Infos

The xeroderma pigmentosum pathway: decision tree analysis of DNA quality


Naegeli, H; Sugasawa, K (2011). The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair, 10(7):673-683.

Abstract

The nucleotide excision repair (NER) system is a fundamental cellular stress response that uses only a handful of DNA binding factors, mutated in the cancer-prone syndrome xeroderma pigmentosum (XP), to detect an astounding diversity of bulky base lesions, including those induced by ultraviolet light, electrophilic chemicals, oxygen radicals and further genetic insults. Several of these XP proteins are characterized by a mediocre preference for damaged substrates over the native double helix but, intriguingly, none of them recognizes injured bases with sufficient selectivity to account for the very high precision of bulky lesion excision. Instead, substrate versatility as well as damage specificity and strand selectivity are achieved by a multistage quality control strategy whereby different subunits of the XP pathway, in succession, interrogate the DNA double helix for a distinct abnormality in its structural or dynamic parameters. Through this step-by-step filtering procedure, the XP proteins operate like a systematic decision making tool, generally known as decision tree analysis, to sort out rare damaged bases embedded in a vast excess of native DNA. The present review is focused on the mechanisms by which multiple XP subunits of the NER pathway contribute to the proposed decision tree analysis of DNA quality in eukaryotic cells.

Abstract

The nucleotide excision repair (NER) system is a fundamental cellular stress response that uses only a handful of DNA binding factors, mutated in the cancer-prone syndrome xeroderma pigmentosum (XP), to detect an astounding diversity of bulky base lesions, including those induced by ultraviolet light, electrophilic chemicals, oxygen radicals and further genetic insults. Several of these XP proteins are characterized by a mediocre preference for damaged substrates over the native double helix but, intriguingly, none of them recognizes injured bases with sufficient selectivity to account for the very high precision of bulky lesion excision. Instead, substrate versatility as well as damage specificity and strand selectivity are achieved by a multistage quality control strategy whereby different subunits of the XP pathway, in succession, interrogate the DNA double helix for a distinct abnormality in its structural or dynamic parameters. Through this step-by-step filtering procedure, the XP proteins operate like a systematic decision making tool, generally known as decision tree analysis, to sort out rare damaged bases embedded in a vast excess of native DNA. The present review is focused on the mechanisms by which multiple XP subunits of the NER pathway contribute to the proposed decision tree analysis of DNA quality in eukaryotic cells.

Statistics

Citations

62 citations in Web of Science®
63 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 27 Feb 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 July 2011
Deposited On:27 Feb 2012 15:03
Last Modified:05 Apr 2016 15:39
Publisher:Elsevier
ISSN:1568-7856
Publisher DOI:https://doi.org/10.1016/j.dnarep.2011.04.019
PubMed ID:21684221

Download