Header

UZH-Logo

Maintenance Infos

Claudin-1 expression in airway smooth muscle exacerbates airway remodeling in asthmatic subjects


Fujita, H; Chalubinski, M; Rhyner, C; Indermitte, P; Meyer, N; Ferstl, R; Treis, A; Gomez, E; Akkaya, A; O'Mahony, L; Akdis, M; Akdis, C A (2011). Claudin-1 expression in airway smooth muscle exacerbates airway remodeling in asthmatic subjects. Journal of Allergy and Clinical Immunology, 127(6):1612-1621.e8.

Abstract

BACKGROUND:

Increased airway smooth muscle (ASM) mass is an essential component of airway remodeling and asthma development, and there is no medication specifically against it. Tight junction (TJ) proteins, which are expressed in endothelial and epithelial cells and affect tissue integrity, might exist in other types of cells and display additional functions in the asthmatic lung.
OBJECTIVE:

The aim of this study was to investigate the existence, regulation, and function of TJ proteins in ASM in asthmatic patients.
METHODS:

The expression and function of TJ proteins in primary ASM cell lines, human bronchial biopsy specimens, and a murine model of asthma were analyzed by means of RT-PCR, multispectral imaging flow cytometry, immunohistochemistry, Western blotting, 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester staining, tritiated thymidine incorporation, wound-healing assay, and luminometric bead array.
RESULTS:

Increased claudin-1 expression was observed in ASM of asthmatic patients, as well as in a murine model of asthma-like airway inflammation. Whereas IL-1β and TNF-α upregulated claudin-1 expression, it was downregulated by the T(H)2 cytokines IL-4 and IL-13 in primary human ASM cells. Claudin-1 was localized to the nucleus and cytoplasm but not to the cell surface in ASM cells. Claudin-1 played a central role in ASM cell proliferation, as demonstrated by increased ASM cell proliferation seen with overexpression and decreased proliferation seen with small interfering RNA knockdown of claudin-1. Overexpression of claudin-1 induced vascular endothelial growth factor and downregulated IL-6, IL-8, and IFN-γ-induced protein 10 production by ASM cells. Claudin-1 upregulation by IL-1β or TNF-α was suppressed by dexamethasone but not by rapamycin, FK506, or salbutamol.
CONCLUSION:

These results demonstrate that claudin-1 might play a role in airway remodeling in asthmatic patients by means of regulation of ASM cell proliferation, angiogenesis, and inflammation.

Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

Abstract

BACKGROUND:

Increased airway smooth muscle (ASM) mass is an essential component of airway remodeling and asthma development, and there is no medication specifically against it. Tight junction (TJ) proteins, which are expressed in endothelial and epithelial cells and affect tissue integrity, might exist in other types of cells and display additional functions in the asthmatic lung.
OBJECTIVE:

The aim of this study was to investigate the existence, regulation, and function of TJ proteins in ASM in asthmatic patients.
METHODS:

The expression and function of TJ proteins in primary ASM cell lines, human bronchial biopsy specimens, and a murine model of asthma were analyzed by means of RT-PCR, multispectral imaging flow cytometry, immunohistochemistry, Western blotting, 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester staining, tritiated thymidine incorporation, wound-healing assay, and luminometric bead array.
RESULTS:

Increased claudin-1 expression was observed in ASM of asthmatic patients, as well as in a murine model of asthma-like airway inflammation. Whereas IL-1β and TNF-α upregulated claudin-1 expression, it was downregulated by the T(H)2 cytokines IL-4 and IL-13 in primary human ASM cells. Claudin-1 was localized to the nucleus and cytoplasm but not to the cell surface in ASM cells. Claudin-1 played a central role in ASM cell proliferation, as demonstrated by increased ASM cell proliferation seen with overexpression and decreased proliferation seen with small interfering RNA knockdown of claudin-1. Overexpression of claudin-1 induced vascular endothelial growth factor and downregulated IL-6, IL-8, and IFN-γ-induced protein 10 production by ASM cells. Claudin-1 upregulation by IL-1β or TNF-α was suppressed by dexamethasone but not by rapamycin, FK506, or salbutamol.
CONCLUSION:

These results demonstrate that claudin-1 might play a role in airway remodeling in asthmatic patients by means of regulation of ASM cell proliferation, angiogenesis, and inflammation.

Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

Statistics

Citations

29 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Swiss Institute of Allergy and Asthma Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:11 Mar 2012 07:11
Last Modified:07 Dec 2017 13:08
Publisher:Elsevier
ISSN:0091-6749
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.jaci.2011.03.039
PubMed ID:21624620

Download

Full text not available from this repository.
View at publisher